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Abstract. It is shown that, if E and F are Banach spaces containing comple-
mented copies of �1, then the space of integral operators I(E, F∗) ≡ (E ⊗ε F)∗ contains
a complemented copy of �2. This answers a question of Félix Cabello and Ricardo
Garcı́a.
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By E and F we denote Banach spaces, E∗ is the dual of E, and BE is the closed unit
ball of E;L(E, F) is the space of all (bounded linear) operators from E into F , endowed
with the uniform norm. By E ⊗π F (respectively, E ⊗ε F) we represent the projective
(respectively, injective) tensor product of E and F . The notation I(E, F) stands for the
space of all integral operators from E into F , endowed with the integral norm, while
LI(2E) denotes the space of all integral bilinear forms on E. By the symbol E ≡ F we
mean that E and F are isometrically isomorphic. The set of all natural numbers is
denoted by �, and � stands for the scalar field.

Recall that we have

(c0 ⊗π c0)∗∗ ≡ (�1 ⊗ε �1)∗ ≡ I(�1, �∞) ≡ LI(2�1);

(see [6, Definition VIII.2.6 and Corollary VIII.2.12] and [8, p. 787]).
It was proved in [7, Theorem 10] that the above spaces do not have the Dunford-

Pettis property. In [2], F. Cabello and R. Garcı́a asked if they contain a complemented
reflexive subspace. We show that they do contain a complemented copy of �2.

THEOREM 1. The space I(�1, �∞) contains a complemented copy of �2.

Proof. The proof relies mainly on two facts: the existence of a surjective operator
�∞ → �2, and the fact that the formal inclusion �1 → �2 is absolutely summing
[5, Theorem 1.13].

Let q : �∞ → �2 be a surjective operator [5, Corollary 4.16]. Then there are C > 0
and a sequence (φn)∞n=1 ⊂ �∞ with ‖φn‖ ≤ C such that q(φn) = en, for all n ∈ �, where
en = (0, . . . , 0, 1, 0, . . .) with 1 in the n-th position.
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Let T : I(�1, �∞) → �2 be given by

T(A) := (〈ei, qAei〉)∞i=1 for A ∈ I(�1, �∞).

By the proof of [7, Theorem 10], T is a well defined operator.
Let J : �2 → L(�1, �∞) be given by

J(α)(x) :=
∞∑

j=1

αjxjφ
j, for α = (αj)∞j=1 ∈ �2, x = (xj)∞j=1 ∈ �1.

We have

‖J(α)(x)‖ =
∥∥∥∥∥

∞∑
j=1

αjxjφ
j

∥∥∥∥∥ ≤
∞∑

j=1

|αj| · |xj| · ‖φ j‖ ≤ C‖α‖∞ · ‖x‖1 ≤ C‖α‖2 · ‖x‖1,

and so J(α) ∈ L(�1, �∞). Moreover,

‖J(α)‖ = sup
{‖J(α)(x)‖ : x ∈ B�1

} ≤ C · ‖α‖2,

and J is continuous.
We now show that J(α) ∈ I(�1, �∞); equivalently, the bilinear form

�α : �1 × �1 −→ �,

given by

�α(x, y) := 〈J(α)(x), y〉 =
〈 ∞∑

j=1

αjxjφ
j, y

〉
,

is integral [6, Corollary VIII.2.12]. By [6, Definition VIII.2.6], we have to show that its
linearization �α belongs to (�1 ⊗ε �1)∗.

Let Bα : �2 × �1 → � be given by

Bα(x, y) :=
〈 ∞∑

j=1

αjxjφ
j, y

〉
for x = (xj)∞j=1 ∈ �2 , y ∈ �1.

Since ∥∥∥∥∥
∞∑

j=1

αjxjφ
j

∥∥∥∥∥
∞

≤ sup
j∈�

‖φ j‖ ·
∞∑

j=1

|αjxj| ≤ C · ‖x‖2 · ‖α‖2,

we have that Bα is continuous with ‖Bα‖ ≤ C · ‖α‖2.
Denoting by I�1 the identity map on �1, since the natural inclusion I2 : �1 → �2 is

absolutely summing, the operator

I2 ⊗ I�1 : �1 ⊗ε �1 −→ �2 ⊗π �1
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is continuous [4, Proposition 11.1]. We have

Bα(I2 ⊗ I�1 )

(
n∑

i=1

xi ⊗ yi

)
= Bα

(
n∑

i=1

xi ⊗ yi

)

=
n∑

i=1

Bα(xi, yi)

=
n∑

i=1

〈 ∞∑
j=1

αjxi
jφ

j, yi

〉

=
n∑

i=1

�α(xi, yi)

= �α

(
n∑

i=1

xi ⊗ yi

)
,

for yi ∈ �1 and xi = (xi
j)

∞
j=1 ∈ �1 (1 ≤ i ≤ n). Hence

Bα(I2 ⊗ I�1 ) = �α,

and �α ∈ (�1 ⊗ε �1)∗. Therefore, J(α) ∈ I(�1, �∞).
Moreover,

‖J(α)‖I = ‖�α‖I = ‖�α‖ = ∥∥Bα(I2 ⊗ I�1 )
∥∥ ≤ ‖Bα‖ = ‖Bα‖ ≤ C · ‖α‖2,

and so J : �2 → I(�1, �∞) is continuous.
Now, for α ∈ �2, we have

q(J(α)(ei)) = q(αiφ
i) = αiei,

so that

T(J(α)) = (〈ei, q(J(α)(ei))〉)∞i=1 = (〈ei, αiei〉)∞i=1 = (αi)∞i=1 = α,

and TJ = I�2 . Therefore, JT is a projection. �
The following Corollary is now clear.

COROLLARY 2. Suppose that E and F contain complemented copies of �1. Then the
space (E ⊗ε F)∗ contains a complemented copy of �2. Moreover, the space (E ⊗ε F)∗ does
not have the Dunford-Pettis property.

The fact that (�1 ⊗ε �1)∗ fails to have the Dunford-Pettis property was established
in [7, Theorem 10].

REMARK 3. (a) We do not know if there are spaces E and F whose duals have the
Dunford-Pettis property, fulfilling the hypotheses of [7, Theorem 10] and which do not
satisfy the conditions of Corollary 2; that is, such that at least one of them contains no
complemented copy of �1.

(b) The author is grateful to the referee for pointing out that the space PI(2�1)
of integral 2-homogeneous scalar-valued polynomials on �1 is isomorphic to LI(2E)
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[1, Corollary 4.4]. Therefore, PI(2�1) also contains a complemented subspace iso-
morphic to �2.

(c) While this paper was submitted, Ignacio Villanueva kindly sent to the author
a draft of [3], where Theorem 1 is proved by different techniques.
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