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The interaction of near-inertial waves (NIWs) with submesoscale vorticity filaments is
explored using theory and simulations. We study three idealised set-ups representative
of submesoscale flows allowing for O (1) or greater Rossby numbers. First, we consider
the radiation of NIWs away from a cyclonic filament and develop scalings for the decay of
wave energy in the filament. Second, we introduce broad anticyclonic regions that separate
the cyclonic filaments mimicking submesoscale eddy fields and analyse the normal modes
of this system. Third, we extend this set-up to consider the vertical propagation and the
radiation of NIW energy. We identify a key length scale L,,, dependent on the strength
of the filament, stratification and vertical scale of the waves, that when compared with
the horizontal scales of the background flow determines the NIW behaviour. A generic
expression for the vertical group velocity is derived that highlights the importance of
horizontal gradients for vertical wave propagation. An overarching theme of the results
is that NIW radiation, both horizontally and vertically, is most efficient when L,, is
comparable to the length scales of the background flow.
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1. Introduction

Near-inertial waves (NIWs), unbalanced motions with frequencies close to the local
Coriolis frequency f, are an important feature of upper ocean dynamics. However, their
dynamics are non-trivial as interactions with the balanced flow modify their spatial
structure and propagation behaviour. Perhaps the most important of these interactions is
¢ -refraction arising from the modification of the local minimum frequency by geostrophic
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vorticity ¢ : =09V /dx —oU/dy, where U and V are the horizontal velocities of the
geostrophically balanced background flow. Early theoretical work utilising a Wentzel—
Kramers—Brillouin—Jeffreys (WKBJ) approximation (Kunze 1985) identified an increase
in the local minimum frequency in regions of cyclonic vorticity (¢ > 0, assuming f > 0
as we do throughout the paper) and conversely a decrease in regions of anticyclonic
vorticity (¢ <0). As a result of these shifts, there is a tendency for NIW energy to
accumulate in anticyclonic regions and it is possible to have trapped subinertial waves
confined to anticyclones. Both effects are now well documented by observations (e.g.
Martinez-Marrero et al. 2019; Thomas et al. 2020). However, NIWs often have large
horizontal scales, particularly if forced by winds that typically have footprints 1000s of
kilometres wide and orders of magnitude larger than typical mesoscale eddies (10-100s
of kilometres). This can place the WKBJ approximation, which requires the waves to vary
rapidly on the scale of the background flow, on very weak theoretical footing.

A more robust model was proposed by Young & Ben Jelloul (1997), hereafter the YBJ
model, which makes no spatial scale assumptions but rather models the evolution of the
NIWs via a multiple scales expansion in time. In the YBJ model the fast dynamics capture
the inertial oscillations with the effects of wave dispersion, geostrophic advection and
¢-refraction modifying the NIW amplitude on the slow time scale. The validity of the
model only requires that the wave Burger number (see § 2.2) and the Rossby number, ¢/f,
of the background flow be small. For many flows these assumptions are met, including
the important case of a wind-forced inertial oscillation interacting with a mesoscale eddy.
In these situations the YBJ model has had great success in predicting the evolution of
the NIWs and in interpreting observational data (Asselin et al. 2020; Thomas et al. 2020;
Conn, Fitzgerald & Callies 2024; Thomas et al. 2024).

However, in recent years growing attention has been paid to submesoscale flows,
smaller-scale flows characterised by O (1) or greater Rossby numbers (Thomas, Tandon &
Mahadevan 2008; McWilliams 2016; Taylor & Thompson 2023). Frontogenetic processes,
prevalent at submesoscales, tend to sharpen dense, cyclonic filaments leading to strongly
skewed vorticity distributions. For example, Shcherbina et al. (2013) studied the statistical
distribution of vertical vorticity in the North Atlantic Mode Water region south of the Gulf
Stream using parallel transects from two ships and a regional model. They found that the
distribution of vertical vorticity was asymmetric with the mode of the distribution near
¢ =—0.5f and a long tail of cyclonic vorticity that extended well past { = f. In the most
extreme submesoscale environments, such as the northern Gulf of Mexico, a similarly
skewed distribution can be found but with vorticity maxima orders of magnitude larger
than f (Schlichting et al. 2023). Physically, the strong cyclonic vorticity corresponds
with thin filaments and submesoscale eddies (see figure 15 in Shcherbina er al. 2013 or
figure 2f in Schlichting et al. 2023). These highly localised vorticity structures imply a
white enstrophy spectrum and a kinetic energy spectrum with a k~2 slope as has been
observed in the upper ocean (Shcherbina et al. 2013; Callies et al. 2015). In the northern
Gulf of Mexico, the large freshwater influx from the Mississippi-Atchafalaya river system
not only sets up the lateral buoyancy gradients driving the submesoscales flows but also
results in a very strong vertical density stratification (Zhang, Hetland & Zhang 2014).
While many of the examples we use in this paper are motivated by the conditions in the
northern Gulf of Mexico, the theory we develop is general and may be applied across a
broad range of realistic oceanic conditions.

The interactions of NIWs with sharp vorticity filaments with a large Rossby number
warrant theoretical consideration since this combination falls outside the purview of
existing theory. In particular, we are interested in how the results of YBJ theory generalise
to large Rossby numbers. Furthermore, the spatial distribution of submesoscale vorticity is
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Figure 1. Schematic summarising the three set-ups we consider. (a¢) A cyclonic vorticity filament (with
Gaussian shape) in an unbounded domain with an initially uniform across-filament velocity u;. (b) The same
cyclonic vorticity filament in an otherwise anticyclonic (Ro,. < 0) flow in a periodic domain. Here we illustrate
the case & := L, /Ly = 10. (c¢) Same background flow as (b), now contoured in blue (anticyclonic) and red
(cyclonic), but in two dimensions. The initial across-filament velocity u;(z) is a horizontally uniform near
surface slab.

Physical parameter Description

f Coriolis frequency

Cm Mode speed

AV Filament strength

Ly Filament width

Ly Half-width of the anticyclonic region

L, Length scale of filament influence, L, := ci /fAV

Table 1. Physical parameters describing the problems we consider. Here L,, is a very important length scale
derived from the other parameters.

not well described by a single length scale and this begs the question of which length scales
are most important for determining the behaviour of NIWs? To answer these questions,
we consider a highly idealised set-up retaining only the key physics necessary to induce
¢ -refraction. Although sharp filaments generally form through frontogenesis, we ignore
frontal dynamics and consider a barotropic filament. We work in two dimensions x, z
neglecting along-filament variations, which not only eliminates geostrophic advection but
also precludes barotropic instability. Despite these simplifications the problem remains
extremely rich and admits a range of phenomena across a large parameter space.

Our approach is to slowly introduce these phenomena by considering three problems of
increasing complexity, summarised by the schematic in figure 1. In this paper we will meet
five independent physical parameters that, for reference, are listed in table 1, along with a
crucial derived length scale L,,. From these physical parameters we construct many non-
dimensional parameters that we also list for reference in table 2. The paper is organised as
follows: in § 2 we introduce the central equation of this study, a generalised Klein-Gordon
equation; then in § 3 we consider the interaction of a single vertical mode with a cyclonic
vorticity filament in an unbounded domain; in § 4 we introduce an additional length scale
to the background flow, namely the width of the domain, to model the anticyclonic regions
that separate cyclonic filaments; in § 5 we extend the set-up of § 4 to a two-dimensional
(2-D) problem and consider multiple vertical modes, vertical propagation and the radiation
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Non-dimensional parameter Physical parameter dependence Name

Bu,, c,2n /f 2L§ Filament Burger number

Roy AV/fLy Filament Rossby number

Vi c2 /fLfAV=Ly/Ly Tunnelling parameter

Uy AV /e

Rog. - % AV/fLy Rossby number of the anticyclonic region
& Ly/L f

T 2¢2 /fLyAV =2L,, /Ly

Table 2. Non-dimensional parameters expressed in terms of the physical parameters defining the problems.

of surface intensified NIW energy; finally, we offer conclusions and points of discussion
in § 6.

2. Klein-Gordon equation
2.1. Derivation

We define a barotropic background geostrophic velocity V (x) and stratification N2(z) :=
—(g/p0)(0p/0z), where p(z) is the background density, pg is the Boussinesq reference
density and g the gravitational acceleration. Focusing on NIWs with small aspect
ratios, we linearise the hydrostatic, inviscid, adiabatic Boussinesq equations about this
background state and make the simplifying assumption that the dynamics are independent
of y. The linearised equations are

3 19
—” St aI; 0, 2.1a)
Bv A%
Sobun o fu= (2.1b)
19
—% o, 2.1¢)
po 0z
ab )
S+ wN? =0, 2.1d)
Ju ow
X Z

where u, v, w are the perturbation velocities, b:=g(p — p)/po is the perturbation
buoyancy defined from the density p, p is the perturbation pressure and f is the Coriolis
frequency, taken to be constant under a traditional f-plane approximation.

By defining a streamfunction ¥ such that u = —9/0z, w = d/dx and systematically
eliminating variables, (2.1) can be reduced to a single equation, i.e.

92 92 92
<8t2 + feff) : N 8x1/2f =0, (2:24)
where
2(x) = ( +3V> (2.2b)
o) =f | f W :

is the square of the effective Coriolis frequency. Note that with variations in y neglected,
the along-filament momentum equation is a conservation equation for the absolute
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momentum M := fx + V 4+ v. Furthermore, f éf(x) is proportional to the gradient of the
background absolute momentum V + fx. Equation (2.2a) is separable and so we write

Y=Y X, ) Zn(), (2.3a)
m
with the vertical modes defined by
) 8 2
cma—ZZZm =—N-"Z,, (2.3b)

where the mode speed c,, is a constant of separation. Taking N2 to be constant and

projecting ¥ onto sine modes over a domain of depth L,, Z, =sinmmz/L_, thereby

satisfying no-penetration boundary conditions, we have
NL,

Cm =

. (2.4)
mi
Alternatively, if the vertical structure is described by a plane wave with wavenumber k.
then ¢;, = Nk, I Before §5, we are not particularly interested in the structure of the
vertical modes, only in the value of ¢,,, which increases with increasing stratification or
vertical scale. Note that in these vertical mode decompositions we have filtered out the
barotropic mode.
With the vertical structure set, the equation for the horizontal structure is

7,9,
[m Cnya + feﬁ(x):| X =0, (2.5)
where we have dropped the subscript m on X to lighten the notation. This is the Klein—
Gordon equation. First derived as a relativistic wave equation, the Klein—Gordon equation
can also be interpreted as describing classical waves in an elastic medium where, in this
case, the term involving f, represents elasticity. Both interpretations provide insight into
the roles of the background flow and vertical structure of the waves in determining the
behaviour of the solutions. For waves with frequencies much greater than f,, the elastic
term is negligible and the Klein—Gordon equation reduces to the wave equation with wave
speed c¢;,. Furthermore, the characteristics of (2.5) have slope ¢, (in x, ¢ space) and so ¢,
is the rate at which the Klein—Gordon equation propagates information.
We solve the Klein—Gordon equation subject to the initial conditions
X =1, ar =0. (2.6a,b)
at

Such uniform initial conditions are a popular theoretical device (e.g. Balmforth er al. 1998;
Asselin & Young 2020; Asselin et al. 2020; Kafiabad, Vanneste & Young 2021) motivated
by the scenario in which a large-scale wind event impulsively excites ageostrophic
motions in the upper ocean. Crucially, the spatial structure of the waves develops
through interactions with the background flow rather than being prescribed by the initial
conditions.

2.2. The YBJ approximation

Young & Ben Jelloul (1997; YBJ) model the evolution of NIWs via a multiple time-scale
expansion. They formally justify the expansion by assuming that the Rossby number of
the background flow and the wave Burger number Bu,, := c,zn /f 2L%U, where L, is the
horizontal scale of the waves, are small. For the barotropic case with a projection onto
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vertical modes, the leading-order horizontal wave velocities are given by
U + vy, = — f2c2 Ae7 VT, 2.7)

where the complex amplitude A varies on a slow time scale (Balmforth et al. 1998).
Furthermore, the leading-order vertical velocity, buoyancy and pressure may also be
expressed in terms of .A. The evolution equation for A is

Y, A) 5

—+ —CA— mVA (2.8)

d(x ,y) 2f
where ¥ is the geostrophic steamfunction, d(-, -)/d(x, y) is the Jacobian, ¢ := V?¥ =
dV/dx —dU/dy is the vertical vorticity of the background flow and V2 :=9%/dx% +
d2/9y? is the horizontal Laplacian. Imposing 8/dy = 0, (2.8) reduces to

A 32A v
2fi == 2 St oA (2.9)
which is the time-dependent Schrodinger equatlon in one spatial dimension.
To reduce the Klein—Gordon equation (2.5) to the time-dependent Schrodinger equation
(2.9), we simply let

X=Ae V" tcec. (2.10a)
such that
32 ¥ {fo

and neglect the 3%2.4/dt> term, consistent with the multiple scales approximation
underpinning the YBJ expansion. Thus, the validity of the YBJ approximation in this
problem hinges on whether or not we are justified in dropping the 82.4/3¢> term. This
approximation has a direct analogue in quantum field theory where it is used to recover
the Schrodinger equation from the Klein—-Gordon equation in the non-relativistic limit
(e.g. Sterman 1993). Throughout the paper we comment on the validity of the YBJ
approximation as a function of the parameters describing the different set-ups we consider.

3. Radiation by a filament in an unbounded domain
3.1. Problem set-up

To proceed further we must now specify the background flow V (x). In our first set-up, we
consider a background state defined by a velocity scale and a single length scale. That is, a
cyclonic filament in an unbounded domain (figure 1a) with geostrophic velocity gradient,

oV 1 X
— =AV—F (=), 3.1
0x Ly Ly

where L is the width of the filament, AV > 0 is the change in geostrophic velocity
over the filament and JF(n) is a positive function of total integral 1. Since the filament
is cyclonic, we expect to observe the radiation of NIWs out of the filament analogous
to the results of Kafiabad er al. (2021) who considered axisymmetric vortices in the
low-Rossby-number limit.

The boundary conditions are X — cos ft as |x| — oo. Clearly, the solution is not
normalisable, i.e. it has infinite energy, but in this aspect the set-up is similar to a scattering
problem in quantum mechanics. Furthermore, we always have the option of reframing our
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problem in terms of ) := X — cos ft. This converts the set-up into a forced problem with
friendlier boundary conditions, } — 0 as |x| — oo, and homogeneous initial conditions,
Y=0Y/ot=0.

Since we are considering a radiation problem, a quantity of considerable interest is the
time scale, T, over which this radiation occurs. To quantify this, we define

: 2 X , 17
Tio:=miny t | X0, )"+ f“—(@0,1)" < — (3.2a)
ot 10
and the YBJ equivalent
YBJ 12
T =min { 1 | 4140, n)? < ol (3.2b)

Here T is the time at which this particular norm of the solution at the centre of the

filament first drops to one tenth of its initial value. The factor of 4 in Tl(OYB])
the fact that the initial value of A is 1/2.

comes from

3.2. The parameter space

With background flow (3.1), the problem is defined by four dimensional parameters: the
Coriolis frequency f, the mode speed ¢, the filament width L ¢ and the filament strength
AV . Therefore, after choosing time and length scales to non-dimensionalise the problem,
we are left with a 2-D parameter space. Non-dimensionalising using the available time and
length scales,

Fim fr, R Lif (3.3a,b)
the Klein—Gordon equation (2.5) becomes
52 2
[ﬁ — Bumﬁ +1 +Rof}"(£)] X =0. (3.4)
The two parameters appearing here are the filament Burger and Rossby numbers:
c2 AV

(3.5a,b)

Bu,, .= —2-  Rof:=——.
"L L
However, this pair of non-dimensional numbers is not necessarily the best choice to span
the parameter space. Indeed, we find that the ratio of the filament Burger and Rossby
numbers,

B 2
Vi = o —_ Cm (3.6)
Rog — fLyAV

can be used to distinguish qualitatively different dynamical regimes. A heuristic
explanation of why y,, is an important parameter is that the spatial structure of the waves
is set by the dispersive, Bu,, 0% / 92, and refractive, Ror F(x), terms. As a result, y;, :=
Buy, /Roy determines whether the spatial scale of the waves is short or long compared
with the width of the filament. In particular, we find that, for y,,;, < 1, the spatial scale
of the waves is /ymL f < Ly whereas, for y,, > 1, the spatial scale of the waves is
YmL > L y. When y,, is large, the waves may penetrate across the cyclonic filament in a
manner analogous to quantum tunnelling. Therefore, we call y,, the ‘tunnelling parameter’.
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Figure 2. Radiation time TIO /2 = fTio/2x (3.2) in inertial periods computed from numerical simulations
of a Gaussian filament (§ 3.5) as a function of y;, and Roy for both the Klein-Gordon (a) and YBJ (b) problems.
Lines of constant Bu,, and oz,zn are overlaid in grey and brown, respectively. The diagram inset in (b) indicates
the distinguished limits summarised in table 3. White regions are excluded as, for these parameter values, waves
radiated from the filament loop around the finite numerical domain and return to the filament before the T
criterion is met.

Critically, these length scale considerations determine which asymptotic techniques we
may employ to investigate the problem. Namely, when y,,, < 1, we use ray-tracing results
derived from a WKBJ approximation whereas when y,,, >> 1, we approximate the filament
as a delta-function.

To make the dependence on y;, explicit, and to aid the asymptotic analysis by expressing
the filament as an order 1 function of an order 1 parameter, we divide (3.4) by Roy to give

| 32 32
[Rof (1 + ﬁ) - Vmﬁ + f(x)] X =0. (3.7a)
Applying the same manipulations to the time-dependent Schrodinger equation (2.9) gives
9 9*
=1 ~ _
|:_21R0f a_f — Vmﬁ + .7:()():| A=0 (37b)

where the filament Rossby number can be absorbed into a rescaled time. Thus, in YBJ
theory, y,, is the only dynamically interesting parameter (e.g. Young & Ben Jelloul 1997;
Danioux, Vanneste & Biihler 2015; Asselin & Young 2019; Conn, Callies & Lawrence
2025). This parameter dependence is neatly illustrated by the radiation time scale 77, that
is, the time scale over which the solution decays at the centre of the filament. We plot the
radiation time scale, computed from numerical simulations of a Gaussian filament (see
§ 3.5), in units of inertial periods (figure 2b). There is a simple monotonic structure along
lines of y;, = constant. Indeed, (3.7b) implies a linear dependence on Roy in log space.
Whereas, on other lines with y,, varying, we observe a more complex non-monotonic
structure. The same plot for the full Klein—Gordon equation (figure 2a) displays similar
parameter dependence but with more complicated behaviour when Roy > 1.

The critical importance of the parameter y,, motivates using it as one of the two non-
dimensional numbers spanning the parameter space. Writing the Klein—-Gordon equation
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Vary Fixed non-dimensional number Ym — 0 limit Ym — 00 limit

Cm Roy High mode, weakly stratified Low mode, strongly stratified
forLy U Rapidly rotating, broad filament Non-rotating, sharp filament
AV Buy, Strong filament Weak filament

Table 3. Distinguished limits achieved by fixing three of the four dimensional parameters and sending the
fourth to 0 or co.

in the form (3.7a) suggests using the filament Rossby number as the second non-
dimensional number and by default this is what we do (see, e.g. figures 2 and 4). However,
this is not the only choice. Indeed, there are at least two other interesting choices that
warrant comment. Of the four dimensional parameters defining this problem two are
velocity scales, ¢, and AV, and the length and time scales may be combined to form a third
velocity scale, f L y. We can define three non-dimensional parameters that are independent
of one of these velocity scales. The filament Rossby number (which is independent of ¢;;,)
is the first of these, the second is the filament Burger number (which is independent of
AV) and the third is

AV
Uy = — (3.8)
Cm
that is independent of f and L . These three parameters are related through y;,:
Bumyn:1 = Roy Eaiym. 3.9)

By fixing one of these three parameters and then sending y,, — 0 or y,,, — 00, six
physically interesting distinguished limits can be reached. For example, suppose that
we wish to study the strongly stratified limit, then we fix the values of f, Ly and AV
before sending c,, — oo. However, this is simply the distinguished limit y,,, — oo with
Roy fixed. Alternatively, the sharp filament limit L ; — O with f, ¢, and AV fixed is
the distinguished limit y,, — oo with «;, fixed. The six distinct distinguished limits are
summarised in table 3 and figure 2(b).

3.3. The WKBJ approximation — y,, < 1

We begin by considering the regime in which the WKBJ approximation is valid, namely
vm < 1. Here, we recall some standard ray-tracing results. However, in Appendix A we
give a formal WKBJ derivation in the limit y,, — 0 considering the three distinguished
limits summarised in table 3. The solution is expressed in terms of a slowly varying
amplitude and rapidly varying phase

X = Ae"? +c.c. (3.10)

Then, with non-dimensional frequency @ := —d6 /97, which given the steady background
flow is conserved along rays, and local wavenumber k :=06/0x, (3.7a) admits the
dispersion relation

@ — 1 =Rof[F (&) + ymk*] (3.11a)
and the group velocity is
Cg = % :R()fymé. (3.11b)
ok 3
1020 A9-9
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Notably, as the waves radiate away from the centre of the filament, to conserve ®, k

becomes O (¥, 1/2), i.e. the waves have spatial scale ,/y,,Ly. The YBJ versions of
(3.11) are
1 ~ -
OB =14 Ros [FGE) + ymk®]. 0P =Rosymk. (3.12a,b)

In both cases the transport equation is

3 2 3 ~ 2
8_;(A )+ a_)z(CgA )=0. (3.13)

We note that Y87 is the expansion of @ to O (Roy) and that ¢ ~(YBJ) is (3.110) but using the
leading-order, i.e. @ = 1, expression for the frequency. Consequently, if we apply the YBJ
approximation when high frequency waves are being radiated then the group velocity will
be overpredicted and the wave energy radiated too rapidly.

We now compute expressions for 779 and TI(OYBJ) under the WKBJ approximation. We
start by computing the travel time of a ray originating at X = Xo. Using the dispersion

relation (3.11a) to eliminate k from the group velocity (3.115), we have

di\ 2 * — (1 + Ror F (x))
~2 'f
Co= <_df> = Rofym ) (3.14a)

As the initial conditions are uniform, we have k=0at7i=0 and, thus, the frequency
satisfies

& =1+ Rop F (%). (3.14b)

It then follows that the travel time T of a ray from Xg > 0 to X > Xg is

11 fF (RN F(R)
'L'(X,XO):ROf Ym /: mdx (314C)

The equivalent YBJ calculation gives

FUB) (5. %9) = (3.15)

/ VF(xo) = F(x')

which is the leading-order term of (3.14¢) in the small Roy limit.
To compute 779, we must consider rays close to the centre of the filament where F(X) =
F(0) + (1/2)F"(0)%> + h.o.t.. Here, F” := 8> F/9%>. Inserting this into (3.14¢) we get

02 yaT(X; Xo) & —— di' =
fom % %}‘//(0) (xg_x/Z)

Ro;' + F(0) i
—7 = ——arccosh | — ).
5F"(0) X0
(3.16)
From this expression we see that rays originating near the centre of the filament fan out
uniformly in the sense that 7 (X; Xg) = 7(X/Xg). The transport equation (3.13) implies that

the total wave amplitude squared between any two rays is conserved. That is, if a(7) and
b(t) are two rays with initial positions ag and bg then

d oo b dx W s
— A2di=0 = / A? —dxo—O = / A? —dxo—const (3.17)
dr a(@)
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Not only does this hold for all rays but these rays are fanning out uniformly and, hence,
dx /dxy is independent of X. It therefore follows that, for the amplitude to drop by a factor
of 10, we require X /Xg = 102 = 100. Thus, we have

Tio:= fTio=R 3,1 Rofl+f(o) h(100) (3.18a)
10 == 10 = RO, ——————arccos 18a
S Ym %f_‘//(o)
and
5 S|
T ™ = fT}g™ = Roy !y ? ————arccosh(100). (3.18b)

Comparing these ray-tracing results for the full Klein—Gordon and YBJ versions of the
problem, we conclude that we may divide the y,,, < 1 regime into two subregimes (IA and
IB) dependent on the Rossby number. Regime IA is the regime y,, < 1, Roy < 1 where the
YBJ approximation is valid. On the other hand, regime IB is the regime y;, < 1, Rof > 1
and the YBJ approximation is not valid. These conclusions regarding the validity of the
YBJ approximation are corroborated by the formal asymptotic analysis in Appendix A. In

the two subregimes the radiation time scale, T := f T, scales as
1
N " 2Ro7', Ror <1,
T~ ynil 7 ! (3.19)
VYm 2R0f ° Ror > 1.

In both subregimes the radiation time scale is a decreasing function of both the Rossby
number and tunnelling parameter.

3.4. The delta-function limit — y,, > 1
We now consider y,, >> 1. From (3.7a), we see that, to leading order, NIWs will not vary
on the filament scale or the dispersive term, y,,8%/3x%2, would be unbalanced. Thus, our
previous choice of spatial non-dimensionalisation, by L ¢, is no longer appropriate. We
choose a new non-dimensionalisation by defining

2

Y= Lyimyml;=-—m (3.20a,b)
Multiplying (3.7a) through by y;,, we have
) 32 32
|:ocm (1 + ¥> ey + )/m]-"(ymx)] X =0. (3.21a)

This choice of non-dimensionalisation has achieved two things. Firstly, we have cleared
the coefficient of the spatial derivatives and, secondly, the filament is now in the form of a
nascent delta-function. As y;,, — 00,

YmF (YmX) = 8(X). (3.21b)

We first study the distinguished limit in which oy, is held constant. This is the most
natural interpretation of the delta-function limit as it corresponds to sending L y — 0 with
cm, f and AV held fixed. We consider the other distinguished limits summarised in table 3
at the end of the section.

Integrating over the delta-function and requiring that the solution is even, we have the
jump condition dX'/dx = (1/2)X at X = 0". Redimensionalising, the jump condition is

1020 A9-11


https://doi.org/10.1017/jfm.2025.10637

https://doi.org/10.1017/jfm.2025.10637 Published online by Cambridge University Press

J.P. Hilditch, J.R. Taylor and L.N. Thomas

L,0X/dx =(1/2)X. Thus, we may interpret L, as the length scale imposed on the
problem by the delta-function filament through the jump condition.

In Appendix B we derive a solution in the delta-function limit. For 7 <« !|¥|, the
solution is simply X (¥, f) = cos . Note that in (X, ) coordinates, the characteristics of
(3.21a) have slope +o,, ! and so the points |X| > a,,7 are beyond the influence of the

filament. For 7 > o, 1|%|, the solution is given by

~ o1 =t |¥] . .
X T) =cosT — Sa / o <\/(f_ 7y %zgz) X0,7)d7,  (3.22a)
0

where Jj is the zeroth-order Bessel function of the first kind. The solution at any point may
be computed from the history of the solution at the centre of the filament. The solution at
the centre of the filament is

X f)—zfoo ! f,/1+1 242 1d (3.22b)
== A 1_i_uzcos 4amu u. .

For fixed 7, as &y, — 0, this reduces to the elementary integral (2/7)cos? [;°(1 +
u?)~'du = cost. Evaluating (3.22b) numerically, we find that, for larger o, i.e. stronger
filaments, the decay at the centre of the filament is more rapid (figure 3). Furthermore,
we find very good agreement between the analytic delta-function solution and numerical
simulations (see § 3.5) with y,, = 5.

For large 7, (3.22b) is amenable to the stationary phase approximation and we find that

i 8 i
X0, F) ~ /mﬂ - cos (t i %) (3.23)
m

Here, large 7 means 7 >> max(l, anjz). For O(1) values of «y, the stationary phase
approximation is very good on an inertial time scale (e.g. figure 3b where oy, =2).
Furthermore, when 7 is large, the solution is an inertial oscillation with a slowly decaying
amplitude. This is a situation in which the YBJ approximation should be expected to
perform well. However, this provides no guarantee that the YBJ approximation will
correctly capture the small 7 behaviour.

To compare to § 3.3, we again compute the radiation time scale. Here we have T ~
anjz = Rofl ¥m, Which is once again a decreasing function of the Rossby number but now
an increasing function of the tunnelling parameter. More precisely,

5 8 800
Tio=10*> x —a 2 = —Ro; 'ym. (3.24)

™ g/

However, if oz,%l is large then this result may be inaccurate as Tlo may be too small for the
stationary phase approximation to be valid.

Finally, we consider the other distinguished limits. In particular, we consider y,, — 0o
with Roy fixed. The case with Bu,, fixed can be handled in exactly the same way. The

complicating factor is that anjz =Ro, Ly — 00 as Y, — oo. The solution is to utilise
substitution (2.10), X = Ae i +c.c.,

(3 .0 3 .
Ro; " ym ﬁ_zlg —ﬁ—kym}"(ymx) A=0, (3.25a)
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X (0,7)

N a2, =025

|
<
W
JEL S

——— ¥Yu=1 === Analytic solution
0.5 —— ¥Y» =35 —-~- Stationary phase approximation

X (0,7)

t2n

Figure 3. Solutions X' (0, ) to the Klein-Gordon equation at x = 0 for (a) a2 =0.25 and (b) a2, =4. Solid
lines are from the numerical solutions. The dashed black line shows the analytic solution (3.226) and the dashed
grey line shows the stationary phase approximation (3.23). The time axis is in inertial periods.

and then rescale time. We define 7 := Royy,, '7 = o2, such that

0% 9 9 5
[ROfVm ! o7 213_5 —aa T YmF (ymx)} A=0. (3.25b)

The leading-order solution is thus given by the delta-function solution to the YBJ equation,
i.e. the 32/ term does not appear until oW, 1. That being said, the full Klein—-Gordon
delta-function solution is still informative in this case as it just corresponds to the inclusion
of a higher-order term. Finally, we note that the temporal scaling f = oz,znf introduced here
in the YBJ solution is the same scaling that arose in the stationary phase approximation
(3.23).

Importantly, this scaling analysis means that the delta-function approximation not only

applies in the distinguished limit L ; — 0 with ¢,,, f and AV fixed but also in the limit

¢m —> oo with f, Ly and AV fixed. In both cases, the radiation time scale is T ~ a,zn =

Rory,, I, although in the latter case this time scale is guaranteed to be large. In other
words, when the stratification is sufficiently strong or the vertical wavelength sufficiently
large, the waves, to leading order, have no structure on the filament scale and it takes a
very long time for the presence of the filament to be felt regardless of the strength of the
filament.

3.5. Numerical solutions

To explore the intermediate regime y,, = O(1), validate our scalings for the decay at
the centre of the filament and further assess the validity of the YBJ approximation,
we numerically solve the Klein—-Gordon and time-dependent Schrédinger equations for
a Gaussian filament F (1)) = exp(—n2/2)/+/2n (figure la). Details of the numerical
schemes can be found in Appendix C. We present the results using the non-
dimensionalisation of §3.3, 7 = ft, X =x/ Ly, and use y,, and Roy as coordinates for
the parameter space. For the numerical solutions, the ‘unbounded’ domain has periodic
boundary conditions at ¥ = £5000 and we use 2'® grid points.
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Ym ™= 0.1 (C) Ym = 1

Figure 4. Hovmdller plots of X’ showing the radiation by an unbound cyclonic filament for varying Roy and
¥m. Dashed white lines indicate rays travelling at the mode speed 7 = =X /,/Ros ¥y, The time axis is in inertial
periods.

Regime Limits Spatial non-dimensionalisation ~Approximation Radiation time scale
- _1
1A Ym < 1, Rop < 1 F=x/Ly WKBJ T ~Ro; 'y ?
- 11
1B Ym <1, Rop > 1 F=x/Ly WKBJ T ~Ro; >y’
I VY > 1 X=x/Ln=3%/Ym Delta-function T ~ a,;z = Rof_1 Vi

Table 4. Spatial non-dimensionalisations, approximations and scalings for the decay time scale at the centre
of the filament in the different regimes of the unbounded radiation problem.

From a suite of 12 Klein—Gordon simulations (figure 4), we observe, for fixed Roy,
a transition in behaviour from wave radiation for small y,, to a more spatially coherent
decaying response for large y,,,. We also observe that, for fixed y;,, increasing Roy leads to
more rapid decay in the filament. However, the more interesting dependence is on y,,. The
scalings derived earlier and summarised in table 4 predict that the radiation time scale is

. . = —-1/2 . . .
a decreasing function of y,,, T ~ y,, '~, for small y,, and an increasing function T ~ y;,
for large y,,,. We should therefore expect the most rapid radiation for some intermediate
value of y,,. This is exactly what we observe in the simulations with the most rapid
radiation occurring for the y;,, = 0.1 simulations. For a large Rossby number, this radiation
can be extremely rapid. For example, for y;, = 0.1, Roy = 10 (figure 4b), the solution at
the centre of the filament becomes negligibly small in less than two inertial periods. It
should be noted that these values are quite reasonable in some regions of the world’s
oceans. With Roy = 10 the geostrophic velocity gradient at the centre of the filament is

1020 A9-14


https://doi.org/10.1017/jfm.2025.10637

https://doi.org/10.1017/jfm.2025.10637 Published online by Cambridge University Press

Journal of Fluid Mechanics

aV/ox = (10/+/2m) f ~ 4.0 f, well within the range of values simulated by Schlichting
et al. (2023) for example.

Plotting T, computed by running numerical simulations until the stopping criterion
(3.2) is reached, as a function of y,, for various Roy (figures 2 and 5a) once again
highlights the monotonic dependence on Rossby number but non-monotonic dependence
on the tunnelling parameter. However, there is a significant and sharp drop in Tjy as we
transition to intermediate values of y,,. In particular, the transition into regime II, which,
for Roy <1, occurs at y,, ~ 0.4, is abrupt and Tyo is very sensitive to the value of y,,
around this point. To validate our predictions for the radiation time scale, we should be
able to make the curves collapse by appropriately rescaling the axes. Therefore, we let
Y= Rojp’ Tlo and X = RO}? vm, Where a and b are exponents to be determined. In each of the

three subregimes we have scalings for T in terms of ym and Roy (table 4). Eliminating y;,
gives the following relationships between Y and X for regimes IA, IB and Il respectively:

y2 ~ Ro}z"*”‘Z)X*l, Y2~ Ro}z“*”‘”X*l, Y ~ Ro}“""”x. (3.26a—c)

To make the curves collapse, we must eliminate Roy. For small Roy, subregimes IA and
IT apply and, thus, we require @ =1 and b =0. Whereas for large Roy, regimes IB and
IT apply and we require a =2/3 and b = —1/3. Applying these rescalings to the axes
(figures 5b and 5c¢) we find that the curves do indeed collapse. Furthermore, by plotting
the asymptotic predictions for 7~"10 from (3.18) and (3.24) on top of the numerical results
we find excellent agreement.

To further assess the validity of the YBJ approximation as a function of y;, and Roy,
we plot the difference between the YBJ approximation and Klein—Gordon solutions in
figure 6. For small Ros, the YBJ approximation performs well for all values of .
For larger Rog, when y,, is small, we observe differences. Notably, the YBJ solution
radiates waves outside of the region bounded by the mode speed, 7 = X /,/Rof y, (white
dashed lines in figure 6). This is a manifestation not just of the overprediction of the
group velocity highlighted in § 3.3 but also of the fact that the Klein—Gordon equation is
hyperbolic and propagates information at a finite speed (the mode speed) whereas the time-
dependent Schrodinger equation is only first-order in time and can propagate information
at any speed. However, when y,, = 10, the YBJ approximation performs well even for
Rog = 10. This is consistent with our analysis in § 3.4 as for y,, = Roy = 10, oc,%1 =1 1is not
large. Furthermore, the YBJ prediction for the radiation time scale (figure 2) shows good
agreement with the Klein—-Gordon prediction when y,,, > 1 and «;,, < 1. These results and
the earlier analysis suggest that the YBJ approximation is valid when y,, < 1 and Roy <1
or yp, > 1 and o, < 1. If we assume that the validity criterion smoothly transitions across
vm = O(1), as figure 2 suggests it should, then we can say that the YBJ approximation
should be valid whenever

Rof <1+ Y. (3.27)

3.6. Summary

In this section we considered the lateral radiation of a single vertical mode with no initial
horizontal structure out of a cyclonic filament into an unbounded domain. The problem is
described by a 2-D parameter space. There are two regimes distinguished by the tunnelling
parameter y,,. For small y,,, a WKBIJ approximation is permissible and we identify the
filament Rossby number Roy as the most useful choice for the second non-dimensional
parameter. In particular, for small Roy, the YBJ approximation is valid. For large y,
the filament may be treated as a delta-function and we derive an analytic solution. In this
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Figure 5. Time scale for the decay of velocity at the centre of the filament as a function of y;, for various Roy.
In (a) the time axis is in inertial periods. By appropriately rescaling the axes for small (b) and large (c¢) Roy
the curves may be made to collapse. Dashed black lines indicate the radiation time scales (3.18) computed for
regimes IA and IB. Dotted black lines indicate the radiation time scale (3.24) predicted by the stationary phase
approximation for regime II.

regime the most useful choice for the second parameter is ot,%1 = Roy /Ym, which determines
the validity of the YBJ approximation. A stationary phase approximation reveals that at
large times the solution in the filament decays as «,,'7~(1/2). A particularly important
result comes from the distinguished limit y,, — oo, a2, — 0 with Ros held constant. In
this limit, which may be achieved by sending the mode speed to infinity, we find that the
filament, however large the Rossby number, is only felt by the inertial oscillations on very
long time scales. Finally, we find that the decay at the centre of the filament is fastest
for intermediate values (0.1 — 1) of y,, and, for large but realistic values of the filament
Rossby number, this decay can occur on inertial time scales. This ‘Goldilocks’ effect where
the most efficient radiation for a given background flow (i.e. fixed values of AV, Ly, f
and N), occurs for waves with just-the-right vertical scale is a recurring theme both of this
paper and of previous studies of NIW-mean flow interactions (Balmforth et al. 1998; Klein
& Llewellyn Smith 2001; Danioux et al. 2015).

4. Cyclonic filament and anticyclonic eddies

Now we move towards a more realistic set-up and introduce an additional length scale
associated with the spacing between cyclonic filaments, i.e. the width of the anticyclonic
regions. We take the same cyclonic filament and place it in an otherwise anticyclonic flow
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Figure 6. Hovmoller plots of the difference between the YBJ and Klein-Gordon solutions for varying Roy and

¥m. Dashed white lines indicate rays travelling at the mode speed 7 = % /,/Ros . The time axis is in inertial
periods.

(figure 1b). The background shear is given by

LOV ey AV o (x @n
—— =Ro, -_— — 1, .
fox “ U fLyT \Ly

~————

Rog

where —1 < Ro,. < 0 is the Rossby number of the anticyclonic region. Then we impose
periodic boundary conditions at x ==+L, and require that the mean vorticity is zero
implying that Ro,. = —(1/2) AV / f L. This constraint means that we have only added one
additional degree of freedom to the problem, which is now defined by five dimensional
parameters: ¢y, f, Ly, AV and L. We require three non-dimensional parameters.
A particularly useful one is

Ly
E=—>1, (4.2a)
Ly
which we can use to express the relationship between the two Rossby numbers

Ror =2&|Rogc|. (4.2b)

4.1. Reduction to the radiation problem

If we may ignore the boundary conditions then this problem is equivalent to the unbounded
radiation problem considered in § 3. However, we must account for the change in the
background flow away from the filament. Separating out the constant anticyclonic part
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Figure 7. Hovmoller plots showing the evolution of NIWs interacting with a cyclonic filament in an otherwise
anticyclonic flow. The parameters have been chosen to be dynamically equivalent to figure 4(a—d). Dashed
white lines indicate rays travelling at the free wave speed. The left time axis is normalised by the period of a
wave with frequency equal to the effective Coriolis frequency of the anticyclonic region. The right time axis is
in inertial periods.

of the background flow, the Klein—Gordon equation (2.5) can be written as

i Roget )= e ()] x =0 (4.3q)
o — | — = o —_— =0U. Ja
“Tar) frax2 T\ Ly
Now we rescale time by defining 7 := /1 + Rog.f = f. e%’f)t, where

fi = f T+ Roge < f (4.3b)

is the effective Coriolis frequency (2.2b) of the anticyclonic region. Finally, we proceed
as in § 3.3 by non-dimensionalising space by L ¢, X :=x/L ¢, and dividing (4.3a) by Roy
to get

1+ Rogc 9? 9? -
|: Roy (1 + 8?2) Vi 552 +.7-"(x)] X =0. 4.3¢)
This is identical to (3.7a) up to a redefinition of the Rossby number. Crucially, the key
dimensionless number, the tunnelling parameter y,,, appears unchanged.

Consider the top row of figure 4 in which we looked at the unbounded radiation
problem with Roy =10 for various y;,. We can reproduce those results in the current
set-up, assuming the boundary conditions are not important, by using the same
Ym values and choosing Ro,. and Roy such that Ros/(1 + Rosc) =10. We do this
for Roge = —1/6, Roy =50/6 = & =25 (figures 7a—7d) and Ro,c = —(1/2), Roy =5
— & =5 (figures 7e—7h). We observe that figures 7(a) and 7(b) are essentially identical
to figures 4(a) and 4(b). Note that this comparison is aided by the fact that in figure 4 we
plot the solutions for |X| < 25 and that in figures 7(a)-7(d) we impose periodic boundary
conditions at X = +25. Furthermore, figure 7(e) is the same as figures 4(a) and 7(a) but
zoomed in along the x axis as the periodic boundary conditions are enforced at X = £5.
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This similitude is a manifestation of the dynamical equivalence of these two problems
when the boundaries are not influencing the flow.

In order for the boundary conditions to not affect the flow we require that L, be much
larger than the important length scales of the radiation problem. First, we have L, >
L ¢ by construction. Another important length scale, derived from the mode speed, is the
Rossby radius, ¢,/ f, which determines the distance that the Klein—Gordon equation can
propagate on an inertial time scale. If Ly > ¢, /f then it takes a long time for filament
to feel the influence of the boundary conditions. Moving from figures 7(a) to 7(d) or
from figures 7(e) to 7(h), corresponds to an increase in c,, with the other parameters held
constant. As ¢, is increased, the solutions diverge from figures 4(a) to 4(d) and tend

towards uniform inertial oscillations. Notably, these oscillations are inertial, i.e. they have
dimensional period 27 /f not 2/ f e(;‘ ), and do not decay in time. The other key length
scale in the radiation problem was L,, and we find that the ratio of L,, to Ly is the key

non-dimensional number in the following sections.

4.2. Horizontal modes

We now consider the cases for which the boundary conditions are important. Here and
throughout the rest of the paper, it is most convenient to non-dimensionalise space by the
half-width of the domain L,. Therefore, we define

Xi=— (4.4a)
and we non-dimensionalise the lateral geostrophic shear with a factor of |Ro,.|, i.e.
v 19V )
— 1= |Roge| ' = —— = —1 + 26 F (§3%), (4.4b)
ox f ox

where again & := L, /L . This implies that we have non-dimensionalised the geostrophic
velocity using the velocity scale (1/2)AV. Once more using the temporal non-
dimensionalisation 7 := f, we write the Klein—-Gordon equation as

92 9> v
Rogel ' (14+ = ) —Thh—+— | X. 4.5
The three dimensionless parameters describing the problem are
1 AV L L
Roge| 1= =) [im2m M _opZm e ZX g (4.6a—c)
2 fLy AV fL, L, Ly

The tunnelling parameter y,,, filament Rossby number Roy and «,, may be expressed in
terms of these parameters as

L 1 Rof  AV?  |Roguc|
Ymi= "=l Rop=26|Rol. ai=—1="T =47

Ly 2 Ym 2 Iy

(4.7a—c)

The imposition of periodic boundary conditions allows us to expand & into discrete
normal modes

o0
X = Z X, e 4 cc., (4.8a)
n=0
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where each mode satisfies

9> v
-1 ~2
|:|ROGC| (1 - a)n) — Fm@ + 8—2} Xn (48b)

We have a periodic Sturm-Liouville eigenvalue problem, more precisely the one-
dimensional time-independent Schrédinger equation, which we may rearrange into the
standard form

9 9V
where 4, is the nth eigenvalue. The problem is mathematically equivalent to the well-
studied quantum mechanics problem of a particle in a one-dimensional crystal lattice.
The eigenvalue problem is independent of |Ro,.|. However, the relationship between the
frequency and the eigenvalues

@2 =14 |Roae| A (4.10)

does depend on |Ro,.|. If we were to make the YBJ approximation (2.10) then we would
arrive at the exact same eigenvalue problem, but the frequency, including the carrier
inertial oscillation, would be given by

3 1
OB =1 4 §|Roac|/ln. (4.10b)

Furthermore, consider the role of the parameter £. It only appears in (4.9) through
9V /0x. It is a parameter that determines the shape, but not strength (which is determined

by |Ro,.|), of the background lateral shear. There are some results that hold for any d 1% /0X.
In these cases the only remaining parameter is [7,.
One such result is a useful expression for the derivative of the eigenvalues with respect

to I,. Let (-) :=(1/2) fjl dx be the domain average. Consider (X;,(3(4.9)/01,)):

92X, 3% v | ax, 30X\ 0y, 5
—x,—V+ (X, | - Ty— + — =(,X,—— )+ X.7). (411
< " 8x2> < ”{ "9x2 " 9k | alL, < ”arm> arm( w7} @D
The linear operator is self-adjoint, with respect to the inner product defined by the domain

average, and so the second term on the left cancels the first term on the right. Manipulating
what is left gives

0L, (&7

arl, - ( Xn2>7
where X, :=0X,/dx. As a corollary, we note that all the eigenvalues, and hence
frequencies, are increasing functions of I7,.

(4.12)

4.3. The minimum frequency mode

4.3.1. Bounds

The minimum frequency mode, i.e. the eigenmode with the smallest eigenvalue, is the
zeroth mode and is special in that the solution has no zero crossings. This allows us to
derive bounds on the minimum frequency. Since A} is periodic, X := 9%X,/9%? must
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take both signs somewhere in the domain. It then follows from (4.9) that 9 v /90X — Ag must
also take both signs. This implies the lower bound Ay > min; 3V /dX = —1. To derive an
upper bound, divide (4.9) by &) and average to get

F182X0+8\7 e X(;2+a\7 v 0
[ —_— _— = = — —_— < = N
"\ Xy 952 o |~ 0T T I\ 0% 9%

(4.13)
where the second equality follows from integration by parts and the periodic boundary
conditions. Together these bounds are

—1<2)<0=1+Ros <@} <1. (4.14)

These are again examples of results that hold for arbitrary periodic background states.
Redimensionalising, we can in general say that the minimum frequency wy must satisfy

) 2 2
n}cm eﬁ(x) <y < rni:can eﬁ(x). 4.15)

We now consider a couple of cases where we can make analytic progress with a focus on
the minimum frequency mode.

4.3.2. The WKBJ regime — y,,, < 1

In the regime y,, = (1/2)£ I, < 1 we may again utilise a WKBJ approximation. In the
interests of brevity, we assume that the filament is symmetric and so we need only solve
over 0 < X < 1. If we further assume that the filament has a single maximum, like the
Gaussian filament, then we have a classic two turning point eigenvalue problem as found
in Bender & Orszag (1999). We define the slowly varying wavenumber for mode n,

fen (%5 ) :=\/|_1+25f(5’2)_/1"', (4.16)

that is determined by the eigenvalue and the local (non-dimensional) vorticity of the
background flow. Enforcing even boundary conditions the solution is

C1hy ! cosh ( I 122n(£/)d)e/), 0<% <A,

Xon = A -
T ook P eos (R Ea8), k<<

4.17)

where X, is the turning point defined by 122,1 (X4; A2n) =0 assuming one exists. The
eigenvalues are determined by the connection formula across the turning point,

%e_ZAz” — tan (% . BZn), (4.184)
where
B 1
Az, :=/ kon(xdx",  Bay, :=/ kn(x") dx’. (4.18b,c)
0 X

A brief derivation of these formulae is given in Appendix D. We also show that B, is
bounded. In particular, By, < nm + /4. Rewriting (4.18b,c), we have

1
VTinBon = / VAo + 1 =26 F(Ex") dx’. (4.19)
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Figure 8. Minimum frequency eigenvalues and eigenmodes for a Gaussian vorticity filament. (a) Eigenvalue as
a function of I, for different £ including theoretical results as & — 0o. The right axis is the frequency squared
(4.10a) for |Ro,c| = 0.5. Dashed grey lines indicate the upper and lower bounds (4.14). (b) Minimum frequency
computed using the Klein—-Gordon equation (solid line, 4.10a) and YBJ approximation (dashed line, 4.10b) for
&£ =10 and |Ro,c| =0.5. (¢) Large I, behaviour of the eigenvalues. Using the delta-function solution Ao /7,
tends to a constant —1/3 (grey dashed line). (d) Structure of the lowest frequency modes for & = 10 and four
values of I},.

As I}, — 0, this integral must vanish and the only way this can occur is if Ay, — —1.
Therefore, all the modes, including the zeroth mode, will, for vanishingly small I7,,
achieve the lower bound for the minimum frequency derived earlier. For analytic filament
structure functions F, including the Gaussian filament, this also requires X, — 1 and the
region in which the solution is wavelike becomes increasingly localised. Furthermore, in
this limit the A, integral is very large and the zeroth mode has By — /4 and in the

anticyclonic region Xp(x) = cos(w/4 — f ;; kdx’ ). One can check that the low horizontal
modes become exponentially small in the centre of the filament (D7, D10 and figure 8d).
We also note that, as I, — 0, the leading-order correction to the minimum frequency
is O(JRog4¢|) (figure 8a) and that there will be O(|Ro,.|) differences between the YBJ
approximation to the frequency and the exact value (figure 8b).

In this regime we have made no assumption about the value of &, indeed the WKBJ
approach works for arbitrary EhY% /0x. We only require y,, < 1. However, since & > 1,
in this regime we must have I}, << 1. Unless we also have |Ro,.| << 1, ¢2,/f?L2 =
|Rogc| I < 1 and, thus, we are in the regime discussed in § 4.1 in which L, is large
compared with both R, and L,, and the boundary conditions are not important. This is
reflected in the fact that the eigenvalues are densely packed near to the minimum and
that the projection onto horizontal modes is a very inefficient method for representing the
solution (figures 9a and 94d).
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Figure 9. Projection of the uniform initial condition X = 1 onto even horizontal modes for £ = 10 and various
I,. The first five horizontal modes and their sum are plotted for points in (a) the WKBJ regime, I3, = 0.005
= ¥, = 0.1, and () the tunnelling regime, 7, = 0.5 = y,, = 10. (¢) Energy content of the even horizontal
modes and (d) frequency squared for |Ro,.| = 0.5 for four values of 17,.

4.3.3. The strong dispersion regime — I, > 1
For large I;,, the spatial derivatives in (4.9) — the dispersive term — are multiplied by
a large parameter that acts to suppress spatial variations in the zeroth mode. For the
higher modes, the large contribution from the spatial derivatives can be balanced by a
large eigenvalue. However, the eigenvalue of the zeroth mode is bounded (4.14) and as I3,
gets larger the zeroth mode becomes more uniform. Young & Ben Jelloul (1997), and later
Conn et al. (2025), derive a result, known as the ‘strong dispersion approximation’, that
carries over to the zeroth mode of the Klein-Gordon equation for arbitrary o 1% /09X in this
regime. The idea is to look for a small correction to the uniform state, i.e. the first-order
term in an expansion in I, !.

Let Xo=1+ I}, X" + 0(I;,2) and o =0+ I3, 'A" + 0(I;2). At 0(1), (4.9)
gives

2" 9V

ot 1=0. (4.20)
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Therefore,

9 X
0x

X
=r,'V+o(r,") Xo=1—Fm—'/ Vdi' + 0(I3,%). (4.21a,b)

The leading-order correction to the eigenvalue may be found by considering the secularity
condition at O (I, 1, but also follows from (4.11),

ﬂ__ 2%__ Z(Xéz)__ 52 -1
Thus,
do=—(VHT, ' +0(r,?). (4.22b)

Unwrapping the non-dimensionalisation, the leading-order correction to the frequency is
given by

W= A1+, (V). (4.23)

We have recovered Young & Ben Jelloul (1997)’s result that the leading-order correction
is proportional to the average kinetic energy of the background flow.

The leading-order correction to the minimum frequency is O (AV?2 /ci = ai). Similar
to the y,,, — oo limit in § 3, we find that in the I}, — oo limit the parameter determining
the leading-order behaviour is «,,, which does not depend on the length scales of
the background flow. However, unlike in § 3 we cannot look at the distinguished limit
I, — oo with «,, held fixed as this would require |Ro,.| — oo. This is unphysical as it
results in an inertially unstable background flow (for |Ro,.| > 1, the minimum frequency
squared can be negative (4.10a)). This limitation means that the leading-order correction
to the minimum frequency will always be small in the strong dispersion regime and, hence,
the YBJ approximation will always be good.

4.4. Delta-function filament

So far we have considered the WKBIJ regime, y;, = (1/2)§15, < 1, and the minimum
frequency mode in the strong dispersion regime, I, >> 1. By construction & > 1, but
otherwise these regimes place no restriction on the value of £. Indeed these arguments hold
with very few restrictions on B0 /0x. We now consider a delta-function filament, which
requires Ly < Ly, (Y > 1) and Ly < Ly (§ > 1) but places no restriction on the ratio of
L,, to L. The delta-function filament is therefore reached through the distinguished limit
& — oo with I, held fixed. The WKBJ, strong dispersion and delta-function regimes are
summarised in table 5.

Away from the filament the even modes have the form
X = cos Ko, (1 — X) (4.24a)
with
Aow=—1+T,K3,. (4.24b)
The jump condition is I3, X, = &), at £ = 0T. Therefore, K», satisfies
Ko, tan Koy = I, L, (4.24¢)
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Regime Limits Comments

WKBIJ regime Ly <Ly« Ly, Wavebehaviour determined by the local vorticity of the
flow. Normal mode decomposition is a very inefficient
representation of the solution.

Strong dispersion regime Ly < L, < L,  The strong dispersion approximation may be applied to
the zeroth mode. Frequency is determined by the kinetic
energy of the background flow.

Delta-function regime Ly <Ly, Ly < Ly Admits an analytic solution with no restriction on
Ly :=2Ly/Ly.

Table 5. Summary of the different regimes considered in the periodic problem.

where K>, is the unique solution in (nw, (n + 1/2)7). For any given filament, the delta-
function approximation will fail for sufficiently large n when the length scale of the waves
becomes too short.

We now consider the limiting behaviours as I, — 0 and I}, - co. For I}, <1,
let Ky, =(n+ (1/2))m — Iyko, + O(Fn%). With this expansion, K», tan Ko, = (n +
(/20 /(I ko) + O(1). Therefore, as I, — O,

1

1 1y’
Kon = <n+—> 7= D= +O0(In)s Az =—1+Tn (n + —) 7+ 0(I)-
2 <n+%) b/ 2

(4.25a,b)

In particular, 19 - —1 as I, — 0 and, thus, even in the delta-function limit we can
achieve the lower bound on the minimum frequency (figure 8a). However, to be in the
delta-function limit y,,, > 1 when I}, << 1 we must have £ >> 1. Furthermore, there are
differences in the structure of the eigenmodes in the WKBIJ and delta-function regimes as
I, — 0. For example, consider the phase of the zeroth mode as it enters the filament. In
the delta-function solution, as x — 0, Xy — cos /2 = 0. Whereas in the WKBJ solution,
at X = X, Xp ~ cos By = cos 7 /4, which represents a phase shift of /4.

For large I7,, we need different expansions for n =0 and n > 1, highlighting that
the zeroth mode is special. First, n > 1, where we let Ky, =nmw + F,Jlkzn + 0(1“,;2).
Working through the expansion, we find that, for I, > 1,n > 1,

1
Koy =nm+T,," — o(r,,%), Ap=ILun*zm?+1+0(I,"). (4.26ab)

Note that the eigenvalues are O([3,;) and thus large. To leading order, the frequency is
given by
2 2.2 R0 1T 2 2 Cm 46
w5, =n T |Roge| Iy =n"m sz)%’ (4.26¢)

which is independent of the properties of the background flow with the exception of the
length scale L,. Here L, is setting the length scale of the waves L,, = Ly /nm and the
frequency is determined by the wave Burger number (c,, /f Ly,)?.

For, n =0, we expand Kg in powers of I}, !, Kg =TI a4+ 0 %a + 0.
We have KotanKo= K+ K3/3+ O(K®) =TI, ai+ I, %(az+a}/3) + O(I,).
Therefore, for I3, > 1,

1 1
Ki=r,"'— 5rm—2 +0(r,%), o= —§Fm—1 +0(r,?). (4.27a,b)
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This not only achieves the upper bound 19 — 0 as [, — oo (figure 8a), but we observe
that the wavenumber Ko — O as well. The solution is tending towards a uniform state.
Moreover, the coefficient —1/3 in (4.27a,b) is consistent with the strong dispersion
approximation, i.e. for the sawtooth geostrophic velocity V= sign(x)(1 — x) associated
with the delta-function filament, we have (\72) =1/3.

The utility of the delta-function filament is not only that it provides an analytical result
for intermediate values of I, but also that it is a good model for sharp submesoscale
filaments. Solving the eigenvalue problem numerically for the Gaussian filament, we
observe very good agreement between the eigenvalues computed for £ = 10, 20 and the
theoretical values assuming a delta-function (figure 8a). This is important as these values
are realisable in submesoscale flows, for example, taking |Ro,.| = 0.5 and & = 10, the peak
vorticity is only dV/dx = 3.5 f, and thus, the delta-function filament is a relevant model
for oceanic applications.

4.5. Lateral refraction

In this problem we are considering a discrete spectrum of horizontal modes. Lateral
refraction and the associated horizontal flux of NIW energy are determined by the time
scale over which the different modes dephase, the structure of each mode and their
relative energy content. To understand this process, we look at how the laterally uniform
initial condition X = 1 projects onto horizontal modes. Conveniently, the Sturm—Liouville
problem has a trivial weight function and, thus, the projection onto horizontal modes
satisfies a particularly simple form of Parseval’s theorem,

(X =1=> (A7), (4.28)

n

where (-) again denotes a lateral average. For a given vertical mode, X" is proportional
to the across-filament velocity and we may interpret (an) as the fraction of the across-
filament kinetic energy contained in the nth horizontal mode. In the strong dispersion
regime, I, > 1, the initial condition projects almost entirely onto the zeroth mode.
The kinetic energy in the higher modes drops off exponentially (figures 95 and 9c¢)
and, hence, the solution (e.g. figure 7h) remains nearly uniform even as the different
modes dephase. Even for smaller I7,, the zeroth mode dominates the energy content. For
example, in the case I}, =0.005, £ = 10, more than 65 % of the energy is in the zeroth
mode. However, many horizontal modes are required to reproduce the initial condition
(figures 9a and 9¢).

The time scale over which the different horizontal modes dephase is determined by the
differences in their frequencies (figure 9d). While these differences are strongly dependent
on I}, and |Ro,.| (differences in J)ﬁ scale linearly with |Ro,.|), the refraction time scales
can be of the order of an inertial period (e.g. figure 7b). This is much faster than the
refraction time scales at small Rossby numbers (e.g. Balmforth et al. 1998; Danioux et al.
2015; Rocha, Wagner & Young 2018; Asselin et al. 2020), as one might expect given
the large Rossby numbers in the filament we are considering. This is an important result
because in the submesoscale regime the background flows also evolve on inertial time
scales. However, we find that ¢ -refraction can occur even faster. The rapid lateral refraction
and their domination of the energy content means that the zeroth modes dictate the long
time dynamics of the NIWs. With this in mind we now consider how the modes propagate
in the vertical.
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5. Vertical propagation

So far we have been solving a one-dimensional problem and have not needed to concern
ourselves with the structure of the stratification or the vertical modes as the lateral
dynamics of a particular vertical mode are only influenced by the mode speed c;,,. However,
the vertical propagation of NIW energy does require knowledge of the vertical structure.
Here, we use uniform stratification and assume the NIWs have a plane wave structure
with vertical wavenumber k, for which the mode speed is ¢;, = N/k,. The plane wave
assumption ignores the role of the boundaries. In particular, the group velocity arguments
we make assume that w is a function of the continuous variable k., whereas the imposition
of boundary conditions implies discrete vertical modes. These arguments are valid if the
discrete modes sufficiently resolve w (k). In practice, this generally means that the high
mode dynamics are well described by plane wave theory but that some caution is required
when considering the lowest modes.

5.1. Group velocity

5.1.1. General expressions
With these choices we can consider the vertical group velocity of a horizontal mode:
dwy,

Con = G (5.1)

However, we can use [, = c,%1 /(f 2L)2(|Roac|), (4.10a) and (4.11) to express the group
velocity as

Oy 0wy  —2N2|Roge|™" 1 8w? —N*1 94, N> 1(x])
wnkg L)zc (Xn2>.
(5.2)
This final expression is reminiscent of the ray-tracing expression for the group velocity
and would be the same if we replaced (X,;Z) / (X,,Z) by (ky L )2, where k, is the horizontal
wavenumber. Furthermore, this expression for the group velocity holds for arbitrary
v /9x. One of the key motivations for studying ¢-refraction is the intuition that it is
necessary to shrink the horizontal scales of NIWs in order to allow them to propagate
rapidly (Gill 1984; Balmforth e al. 1998). This intuition is based upon the plane wave
dispersion relation and group velocity but we can see that it holds more generally: the
generation of horizontal gradients is critical to the vertical propagation of NIWs.
This expression also holds under the YBJ approximation if we replace w, by f,

c = = _
SN 9k, A0, K3L2f2 2w, 00,  wyk3 L2 3T,

TR (a7

(5.3)

As aresult, YBJ theory always underpredicts the group velocity of the minimum frequency
mode, since wp < f, but overpredicts the group velocity of the super-inertial high modes.

Here we ask: For a given background flow, what wavenumber maximises the magnitude
of the vertical group velocity? It is natural to non-dimensionalise and express the group
velocity in terms of I}, |Ro,.| and &. For given |Ro,.| and &, we then find the optimal I7,.
The non-dimensional group velocity is given by

n N C?n L(Xriz) _ 3/2~—1 3/2(X;;2>
Cg,n = f fo = f3L§ d)n (an) = |R0ac| w, Fm _(Xn2> (54)
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In this expression, there is explicit dependence on both |Ro,.| and I},. The contribution
from the horizontal structure
(%)

n

5.5
2 (5.5)

n =

depends only on [, and &, but not |Ro,.|. The frequency term depends on all
three dimensionless parameters. However, under the YBJ approximation the frequency
dependence drops out,

(YBJ ) /2
o(YBI) Nc — —|Ro |3/2F3/2 <X ) (5.6)
Com 1= = Ouc 51 .
f f L, (x2)
Ignoring the frequency term for the moment, we see that I, has two roles in determining

the group velocity. First, there is the explicit dependence on F,S/ 2

the structural contribution S,,.

and second, it determines

5.1.2. Delta-function filament
For the delta-function filament, we can compute S», exactly using (4.24a),

<X2/n2> 2 fol sin2 Ko, (1 —x)dx 2 1— 2K2 sin 2K,
Son = 3= K5, 1 —— = K5, . (5.7)
<X2n ) fo cos? Ko, (1 — X) dx 1+ m sin2Ko,

Furthermore, we can use the asymptotic expansions for K5, and @y, in the limit of small
and large I}, derived in § 4.4 to compute Sy, and ¢, 2, in these limits.

However, in all but one case the leading-order term in the expansion for Ky, is a
constant. Consequently, Sy, also tends to a constant. For example, as I, — 0, Ko —
/2 and, thus, Sy — n2/4. In general, as I}, — 0, Sy, — (n+ (1/2))2712. Moreover,
@n — +/1 —|Rogc| and, hence, ¢q , ~ F3 /2 (figure 10a). In the limit of small I, we have
recovered the familiar k- 3 vertical wavenumber dependence of ray-tracing.

The limit [;,, — o0 1s ‘more interesting. For n > 1 (4.26a), K, — nm and, thus, Sy, —

n?m?. However, in this case the leading-order contribution to the frequency also depends
on Fm, 1.€.

@n — n7t|Roge|V2 Y2 (5.8q)

and, thus, the group velocity is only linear in I3, ~k_ 2 (figure 10a),
2

m
712

Co.n = —nT|Roge| [y = —nm (5.8b)
Finally, consider the zeroth mode in the strong dispersion regime I, — oo. In this limit,
Ko— Iy '? = Sy — (1/3)K¢ — (1/3)[;72 (figure 10b). Since @y — 1, we have

R 1 ~1/2
cg70—>—§|RoaC|3/2Fm 2, (5.9

In the strong dispersion regime the contribution from the horizontal structure is very
sensitive to the vertical wavenumber to the extent that the group velocity is proportional
to k;.

This result for the zeroth mode in the strong dispersion regime generalises to arbitrary
periodic background flows through the strong dispersion approximation. From (4.22a) we
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Figure 10. (a) Non-dimensionalised group velocity of the first five even modes for the Gaussian filament with
Rogc = —0.5 and & = 10. (b) Horizontal structure contribution Sy to the group velocity of the zeroth mode for
& =10, 25 with asymptotic scalings for the delta-function filament in red and blue. (¢) Non-dimensionalised
group velocity of the zeroth mode for £ = 10 and four values of Ro,.. Both the Klein—-Gordon (5.2, black) group
velocity and the YBJ approximation (5.3, blue) are plotted. The maxima of the group velocities are denoted
by stars. (d) Optimal value of I3, I, for radiating NIW energy as a function of £~! for four values of Roge.
Under the YBJ approximation the optimal value is independent of Ro,.. Green lines in (b) and (d) denote

I, = 0.956, the location of the maximum of [ ,3/ 280 for the delta-function filament.

have Sy — Fn%(\}z) and, thus,
N - -1/2
8e.0 = —|Rogc 2 (VA Iy 12 (5.10a)
Redimensionalising,
fVH 3
Ncp N2

consistent with Young & Ben Jelloul (1997). We again emphasise that under the strong
dispersion approximation the dynamics are independent of the length scales of the
background flow and that results derived using the YBJ approximation extend to the
Klein—Gordon equation as the zeroth mode frequency tends to f.

(5.10b)

Il
|
=~

2]

Cg,0 —_ —
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5.1.3. Optimal radiation

The special behaviour of the zeroth mode, i.e. that the group velocity magnitude becomes
a decreasing function of [, for large I;,, means that there exists an optimal value of
I, for radiating energy, generalising the findings of Balmforth er al. (1998). We call this
value I';. Thus, for a given background flow, i.e. fixed values of AV, L, L,, N and f,
the optimal vertical wavenumber for radiating NIW energy is

k= 2N 1 (5.11)
UV AVFL Ty ’

Under the YBJ approximation, the group velocity (5.3) factorises into a term depending
on |Roy:| and a term depending on I3, (and &) but not |Ro,.|. As a result, I is

independent of |Ro,.| (figures 10c and 10d) and occurs at the maximum of [ ,3/ 280. For

the delta-function filament, this maximum occurs at I,y = 0.956 with value I ,2/ 280 =0.20
(figure 100).

Using the Klein-Gordon group velocity expression with frequency dependence (5.2)
not only increases the group velocity of the zeroth mode but also shifts the location of the
maximum to smaller [, (figures 10c and 10d). Furthermore, at finite &, I is smaller
than the delta-function value (figure 10d). For the Gaussian filament with & =10 and
Roqe. = —1, I';; is approximately half the delta-function value of 0.956.

The non-monotonic [, dependence of the zeroth mode group velocity and the
subsequent existence of an optimal I, for vertically radiating NIW energy mirrors the
vm dependence of the decay time scale of the lateral radiation problem in § 3. Both
problems highlight the importance of O (1) parameter regimes that are not easily tackled
by asymptotic approaches. Notably, this non-monotonic behaviour only occurs for the
zeroth horizontal mode. However, as we argued in § 4.5, for uniform initial conditions,
this mode dominates the energetics even for small I;,,. Moreover, the higher horizontal
modes have larger group velocities since S, is larger and so they propagate away more
quickly leaving the zeroth mode behind. We now demonstrate this explicitly with 2-D
linear simulations.

5.2. Linear simulations
We run 2-D linear simulations studying the evolution of a slab initial condition in the

across-filament velocity,
L pat(3+ 2 (5.12)
== er — ). .
) H

We project u; onto cosine modes and evolve each vertical mode, with the exception of
the barotropic mode that we discard, according to the Klein—Gordon equation. For the
background flow, we use the Gaussian filament with Ro,. = —0.5 and £ = 10. We take the
depth of the domain to be L, =0.1L, and H =2 x 1073L,. We use 512 vertical modes
and 512 horizontal grid points. With u expressed in cosine modes, it is simple to compute
w from continuity and then v and b from (2.15,d).

In the initial condition the energy content of each vertical mode is a decreasing function
of m, but the shear is maximal at k; &~ 1/H (figure 11a). We define bulk parameters I'y

and yp, analogous to I}, and y,, using the shear scale H by
L NH? 151‘ (5.13a,b)
= == . 13a,
"7 Rogel pL2 TN
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Figure 11. (@) Power spectrum of the initial across-filament velocity (5.12) and vertical shear as a function
of the vertical mode number. The vertical grey line indicates k, = 1/H. (b) Theoretical prediction of the
group velocity (5.2) of the zeroth horizontal mode as a function of the vertical mode number for the three
different values of N/f simulated. (c—e) Across-filament vertical shear at the centre of the filament. In
(c—e) the x axes are in inertial periods and the y axes are 7 :=z/L,. White lines indicate a ray moving at
the theoretical maximum group velocity, i.e. the maxima of (b).

N/f In VH
100 0.08 0.4
250 0.5 25
500 2 10

Table 6. Two-dimensional linear simulation parameters.

These bulk parameters best describe the shear containing modes but most of the energy
is contained in lower modes with I3, > I'y and y,, > yg (figure 11a). Having fixed the
value of H/L, and |Ro,.|, we vary 'y by changing the strength of the stratification,
i.e. N/f. We focus on three cases, N/f =100, 250 and 500, which respectively give
I'y =0.08, 0.5 and 2 (table 6). These particular choices of N/f are inspired by the
conditions in the northern Gulf of Mexico and are thus towards the large end of the range
of realistic oceanic values, at least away from the low latitudes. However, the ratio N/f
has a limited independent value outside of the parameters 'y and yg. We could achieve
the same 'y and yy values for different stratifications by adjusting the value of H/L,.
We discuss the range of realistic values of 'y and yg in § 6. That being said, N/f does
have some independent value in that it is used to non-dimensionalise the group velocity
(5.4). Consequently, if we consider two cases with the same I’y but different stratifications
then the NIW energy will propagate more rapidly in the less stratified case.
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An animation of the evolution of u in the three simulations (see supplementary movie 1
available at https://doi.org/10.1017/jfm.2025.10637) demonstrates the two major effects
of varying the stratification. Firstly, in the N/f = 100 case we observe beams radiating
down and out from the centre of the filament. This classical behaviour of inertia-gravity
waves is indicative of high frequency waves radiating along rays and occurs because at
low y,,, where the zeroth horizontal mode is strongly evanescent in the filament, the
initial condition projects broadly onto horizontal modes. After the beams have propagated
away, we are left with the slower propagating low horizontal modes — primarily the
zeroth mode. The beams are not observed in the higher stratification cases where the
projection onto higher horizontal modes is much weaker, although a weak signal from
the other low horizontal modes, mostly mode 2, can be observed. The stronger tunnelling
in the higher stratification cases is also evidenced by the greater shear amplitude in the
slowly propagating wavepacket at the centre of the filament (figure 11c—e). A higher
frequency wavepacket associated with the second horizontal mode is also present in
figures 11(d) and 11(e).

The second observed effect is the slower propagation of the zeroth mode as the
stratification increases. Plotting the group velocity (5.2) as a function of vertical
mode number, which is proportional to k,, we see that the location of the maximum
group velocity increases with N/f since the dispersivity is proportional to (N/fk,)>
(figure 11b). Furthermore, the magnitude of the maximum group velocity decreases,
which follows from the explicit dependence of the group velocity on N/f. In other
words, increasing N/ f is equivalent to stretching the group velocity—-mode number curve
along the x axis while compressing it down the y axis. The result is that, for the
energy containing low vertical modes, the magnitude of the group velocity decreases
with increasing N/f. This counter-intuitive dependence on stratification in the strong
dispersion regime (small [7,), first noted by Balmforth et al. (1998), is the opposite
of the behaviour one would predict by naively applying ray-tracing. If the energy were
contained in the high modes then we could apply ray-tracing and we would observe the
opposite behaviour — at high vertical wavenumbers the group velocity is an increasing
function of N/f (figure 11b). In addition, the slices of the across-filament shear at the
filament centre (figure 11c—e) demonstrate vertically coherent wavepackets radiating at the
maximum group velocity. The maximum is a stationary point of the group velocity and,
hence, wavepackets propagating at the maximum group velocity are weakly dispersive and
able to maintain a coherent spatial structure.

6. Discussion

In this paper we explored the interaction of NIWs with strongly cyclonic vorticity filaments
to which YBJ theory does not necessarily apply. First, we considered the lateral radiation
of a single vertical mode from a cyclonic filament and developed scaling for the decay
of the NIWs in the filament as functions of the tunnelling parameter y;,, and filament
Rossby number Roy. Then we considered the case of a cyclonic filament in an otherwise
anticyclonic flow in a finite width domain. The problem was approached via a normal
mode decomposition with a focus on the zeroth mode, which has unique behaviour
and, for an initially uniform velocity field, dominates the solution. Finally, the vertical
propagation of the waves was considered by deriving a generic expression for the group
velocity of each normal mode that highlights the importance of gradients in the wave
field. A fruitful approach throughout the paper is to model the sharp filaments as delta-
functions. We find this to be a good model for large yet realistic values of the Rossby
number.
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A recurring theme of the paper is the vastly differing behaviour of the waves as the
mode speed c;;, which depends on the stratification and vertical wavelength of the waves,
is varied. The key consideration is how the length scale L,, := c2,/f AV compares to the
length scales of the background flow. For waves with short vertical wavelengths such
that the tunnelling parameter y,, := L,,/L 7 is small, WKBJ and ray-tracing ideas may be
applied. Only the local properties of the background flow determine the wave behaviour
and increasing the vertical wavelength leads to more rapid propagation both horizontally
and vertically. However, if the vertical wavelength is large such that the length scale L, is
larger than the length scales of the background flow then increasing the vertical wavelength
further leads to less rapid radiation as dispersive effects act to smooth the response to
the filament. In the periodic problem this smoothing effect only applies to the zeroth
horizontal mode. But in the strong dispersion regime, I}, :=2L,, /L > 1, the zeroth
mode increasingly dominates the solution assuming a uniform initial condition. When
L,, is much larger than length scales of the background flow, i.e. in the limits y,, — oo,
I, — 0o, the dynamics become independent of the length scales of the background
flow. Indeed, the strong dispersion approximation shows that the only property of the
background flow that matters as I3, — oo is the average kinetic energy.

The strongest radiation occurs when L, is comparable to the length scales of the
background flow. The most efficient lateral radiation out of the filament occurs for O(1)
values of y,,,. However, if we are more interested in the vertical propagation of NIW energy
then the key parameter is I, because the uniform initial condition projects mostly onto
the zeroth mode even in the WKBJ regime. The differing dynamics for small and large 17,
means that the group velocity of the zeroth horizontal is maximised at some intermediate
I, = 0(1) value.

The importance of both the vertical wavelength and stratification for the propagation
of NIWs was recently highlighted in Thomas et al. (2024) and is a particularly important
consideration in the submesoscale regime where the small horizontal length scales of the
background flow compared with the mesoscale mean that I3, (and y,,) will generally
be larger and any intuition honed on ray-tracing may be found wanting. Since these
parameters depend on the vertical wavelength of the waves in addition to the stratification,
velocity and length scales of the background flow a vast range of values can be found
in the ocean. In particular, by allowing the vertical wavelength to tend to zero we can
make [}, arbitrarily small. Conversely, in very weak background flows I3, can be very
large. It is therefore necessary for any given problem to compute for what vertical
wavelengths I, is large and for what vertical wavelengths it is small. For example,
if we take some reasonable mid-latitude values for the background submesoscale flow
N2=1075 s72, f= 1074 s, AVv=10"! m s~! and L, = 10* m, then we find that
Iy =1 for k; =102 m~'. Therefore, the lowest modes with k, ~ 107> m~! will have
I}, ~10? and will fall into the strong dispersion regime but the high modes will have
small I7,. One should also expect to find that the fastest radiating waves have vertical
wavelengths of a few hundred metres.

Finally, we comment on some of the physics not included in this study. The set-ups
considered here were designed to isolate and focus upon the effects of vorticity. The
2-D set-up is convenient in that it eliminates advective effects and makes the problem
tractible. However, even though we demonstrated that ¢-refraction can be a very fast
process, advective effects are likely to play an important role at the submesoscale.
Furthermore, while Asselin et al. (2020) found that strain was remarkably unimportant
in the quasi-geostrophic barotropic weak dispersion regime (I3, < 1), their results do
not extend to the submesoscale regime. The other advantage of the 2-D set-up is
that barotropic instability is excluded. The vorticity structures that we considered are
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unstable to barotropic instability according to the Rayleigh—Kuo criterion (Kuo 1949).
Nevertheless, such vorticity structures are observed in the ocean and are sustained through
frontogenetic processes. Thomas (2019) found that the secondary circulations associated
with frontogenesis are themselves able to enhance the vertical radiation of NIWs through a
differential vertical Doppler shift. Lastly, the effects of vertical variations in vorticity, and
baroclinic background flows more generally, were not considered here but are the subject
of ongoing work.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.10637.
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Appendix A. Derivation of the ray-tracing equations
A.l. Fixed Roy

Starting from (3.7a) with Roy fixed, we derive the ray-tracing equations by making
a WKBIJ approximation in the small parameter € := ./¥,,. Introducing a rescaled time

1 := /Rogef = (cm/L ¢)t we have

, (3* 92 .
[e (822—ﬁ)+1€of +f(x)]X=o. (A1)
The WKBJ ansatz is
oo .
X(E H=exp|ie™' > el5;E 1) | +cc. (A2)
j=0

At O(€%) we have the eikonal equation
9S0\* (880" §
(=) +(532) +Ro ' +F@ =0 (A3)
at ax
Introducing p; := —3Sp/dt and p; :=3Sy/d%, (A3) can be solved by the method of
characteristics. The dispersion relation and ray-tracing equations are

P} =pi+Ro; ' + F(5), (Ada)
di dx dp; dp; OF

——=2Ap;, —=2pz, — =0, =—1—p;. A4b
ds pi ds px ds ds ox bi ( )

where s parameterises the rays and A is a constant. Equation (A4b) can be combined to
express the conservation of frequency along the rays in (X, ) space,

ol g 0
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where p;/p; = (dx/ds)/(df/ds) is the group velocity. At O(e') we have the transport
equation
%Sy ,3S0 S .3%So _3SpdSi
i—5 — 2~ — 17— t+2—=—-—==0. A6
T R P T AR FAFT: (46)
Making the substitution S; = —ilog A =—(1/2)ilog A2, this can be formed into a
conservation law
0

9
— ~ 2 R
PRGN

Utilising (A5) we can manipulate the transport equation into its most useful form

9 3 [ p:
T+ 2 (ﬁfﬁ) —0. (A8)
ot ox \ p;

(pzA?) =0. (A7)

Unwrapping the temporal rescaling to express the equations in terms of 7, X, and phase
0 := e~ 18, gives the ray-tracing results stated in § 3.3.

A.2. Fixed Bu,,

We also consider the distinguished limits y,, — 0 with Bu,, or «,, fixed. In the former
case, the derivation is exactly the same as above except that the term

Ro;' = ynBu,,' =€*Bu,,! (A9)

drops out of (A3) and (A4a). In practice however, it is useful to retain this lower-order
term in the dispersion relation as it becomes relevant in the far field as 7 — 0.

A.3. Fixed o,
The latter case requires more work as
Ro;' =y, 'a,? =€ 2a,? (A10)

is large and must be accounted for at leading order. However, this is precisely the case
where YBJ theory applies. Making the substitution (2.10), i.e. X = Ae " +c.c., (3.7a)

becomes
9 3 , 92
2 2 .
€ — —2i— | — E F All
[am (8[2 az) 952 + (x)] (A1)
Here, the appropriate rescaling of time is 7 := a €31 giving
32 IR
2 4
Al2
|: 012 of 9x2 ] (A12)

The first term will play no role until O (¢2) and so the YBJ approximation is valid to that
order. The WKBJ ansatz is

A fy=exp [ie™" Y €ls;(x. 1) (A13)

and the eikonal equation is

3S 350\ *
270 4 (—") +F (%) =0. (Al4)
ot 0x
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Again applying the method of characteristics, we have the dispersion relation

pi = pi+ F (@), (Al5a)
and the ray-tracing equations
df dx dp; dp; oF
—=1, —=2p;, —1=0, =—1——p;, Al5b-
ds ds Px ds ds ox pi ( ?)

where p; = 3Sy/9f and p; = 3Sp/9%. At O(e") the transport equation is

aS 928 98038
1220 220001 (A16)
ot 9x2 0x 0Xx

Once again making the substitution S} = —ilog A = —(1/2)ilog A®> we immediately get
the conservation law

0. (A7)

9o, 9 o
(A + o (pzA?)

Once more, unwrapping the temporal rescaling to express the equations in terms of 7, X,
and phase 0 := e ~1 S, gives the YBJ ray-tracing results stated in § 3.3.

Appendix B. Solution for a delta-function filament
We convert (3.21a) to an integral equation by means of a Green’s function. We write

92 92 .
LixcX = |:ozn_12 <1 + ﬁ) — axTz] X ==y F(YmX)X. (Bla)

The Klein—Gordon operator Lk has constant coefficients and causal Green’s function

GG —¥.7— )= | 2000 (\/(f— )2 — o (@ —W), =1 >0 ¥ =¥,
0, otherwise,

(B1b)
where Jy is the zeroth-order Bessel function of the first kind (Polyanin & Nazaikinskii
2016). Including a term cos? that satisfies the initial conditions and the homogeneous

Klein—Gordon equation, the solution satisfies
X(X,1)=cost — / / G(xX — X', 1 — 1) ymF (ymX )X (X', 1) dx’ d7’. (Blc)
0 J—oo

We now make the limit y,, — oo and treat the filament as a delta-function. Evaluating the
spatial integral we have

t

X 7)=cosT— / GG.T—)X(0.7)d7. (B2)
0

Substituting for the Green’s function produces (3.22a).
Setting X = 0 we have an integral equation for the solution at the centre of the filament,

. o1 P Y
X (0, t)=cost—§ocm/ Jo(t — ) X(0, ) dr’. (B3)
0
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2

v

1 v

Figure 12. Deformed contour for the Bromwich integral. The original contour is in red but can be deformed
into the orange and blue contour. The branch points are at s = %i, indicated by black circles and the branch
cuts run along the imaginary axis through infinity. The dashed orange lines indicate contours at infinity. The
four quadrants are indicated by roman numerals.

Taking a Laplace transform, X = fooo Xe’t df, converts the convolution into a product

1 1 .

The solution can then be expressed as a Bromwich integral

X(0,7) = — / s ! g (BS)
s = — € S,
271 Jeioo 1+ 52 Sa + 1+ 52

where the contour is taken over a line Re(s) = ¢ > 0 that lies to the right of the branch
points at s = =+i.

Connecting the branch points with a branch cut along the imaginary axis through
infinity, we deform the contour as indicated in figure 12. The contour is deformed in this
way so that the dashed orange contours at infinity do not contribute to the integral. This
can be seen by applying Jordan’s lemma to the semi-circular contour and the estimation
lemma to the remaining parts. The small orange contours around the branch points also do
not contribute to the integral. For example, putting s =i+ €e'?, @ € (=, 0), we find that
the integrand is O (4/€) and, hence, the integral vanishes as € — 0.

On the blue contours we make a substitution. In the quadrants I and II we put s =

in/1 + o2, whereas in quadrants IIl and IV we put s = —i+/1 + o2, In all cases o € (0, 00).

With this substitution we have v/1 + s2 = io in quadrants I and III and /1 + 52 = —io in
quadrants II and I'V. Summing the four pieces the integral reduces to

1 ) eif«/ 1402 eif\/ 1+02 e—itN«/ 1402 e—if«/ 1402
X(0,1)= /
0

I — 17 —t7 —t — | do (B6)
jam+1o 50m — 10 50y, +10 50m — 10

00 Oy cos 1+ 02>
= —/ do.
0-2 + 012
The substitution o = (1/2)a,,u gives (3.22b).
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Appendix C. Numerical solution of the Klein-Gordon and time-dependent
Schrodinger equations

Discretising the spatial derivatives with a fourth-order accurate centred five point finite
difference scheme, the Klein—Gordon equation (3.4) is written as

X=—MX, (C1)

where subscripts denote time derivatives and M is a positive definite symmetric matrix
(assuming the flow is not inertially unstable). Similarly, the time-dependent Schrédinger
equation can be written as

A;:—%i(M—I)A, (C2)

where lis the identity matrix. We use a three-stage fourth-order diagonally implicit Runge—
Kutta (Nystrém) schemes to time step these equations.

For the Klein—Gordon equation, the state variables X" and X ;3 are advanced with time
step h according to

n+cj

3
+1 _ 2 .
X =X h X+ Y b X

e (c3a)
j=1
3
n+1 _ yn 1 4 tC
X=Xt h Yy bA (c3b)
Jj=1
and the intermediate steps are given by the implicit equations
i
XM= X" 4 h XY+ R ap X5 (C30¢)
k=1
The coefficients are
3 9
€1 | an 5 50
9 9 9
C2 | az1 ax 10 20 50
6 | 234657  —891 891 9
€3]431 A3 433 = 37 | 7266325 2532650 50 (C4)
by by b3 115 55 42 439
, ; ; 729 2457 132 678
by, by, by 575 550 50 653
1458 2457 132 678

and the resulting scheme is unconditionally stable (Sharp, Fine & Burrage 1990).
For the time-dependent Schrddinger equation, the state variable A is advanced
according to

3

1 I Laxg)

AT = A+ h Y B AT (C5)
j=1

with the intermediate steps given by
i
A = AT h Y ap AL (C6)
k=1
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The coefficients are

c1 | an )1/ X 14

Cy | az ax 3 3=V 1

c3|as axn ax = 1- 2y 1 —4y 14 (o))
|5 B B 2y(y=D _6y=1_ 2y(y=D

2y—1 6y (2Qy—1) 2y—1

with y =(3 +24/3 cos (r/18))/6 (Kennedy & Carpenter 2016). This scheme is also
unconditionally stable.

Appendix D. The WKBJ solution

Here we derive the connection formula for the WKBIJ solution. The derivation, by
and large, closely follows Bender & Orszag (1999) and uses some intermediate results
given therein. Define Q, (x; A,) := (dV/9x — A,)/ I, such that the Schrodinger equation
maybe written as
32X, .
_Azan(x;/ln)Xn- (D1)
ax
In § 4.3.2 we defined &, := /| O, |. Applying even boundary conditions the solutions away
from the turning point are

x 1
in=cl|an|‘/4cosh(/ \/anda%/), in=02|an|1/4cos</ ¢—and£/)
0 X

(D2)
for X < x, and X > X, respectively. Near the turning point X, defined by Q», (x,) =0 the
Schrodinger equation is the Airy equation

R

W =dy, (X — X4) X2y, (D3)

>0. Defining ¢ :=a,(X — X4x) the solution near the

where a2n.
turning point is

Xy, = C4Ai(—t) + CpBi(—1). (D4)

Near the turning point we have Q»,(x) = —a%nt and the solution entering the filament,
t<0,is

— 2 )e* .
Xop = Craz, > (=174 cosh (Azn—g(—zf/z), Agy = / V0 di'. (D5ab)
0

Comparing to the asymptotic forms of the Airy functions as t — —oo,

2 1 2
~ 1/4 _Z(_p3/2 ()~ —(—p)~1/4 Z(—p3/2
Ai(—1) «/_( I3 exp( 3( t) ), Bi(—1) \/_( 1) exp (3( 1) ),

(D6a,b)

we find the matching conditions.
Ca=a, *met»Cy, Cp= —az_nl/z\/—e Ancy, (D7a,b)
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Similarly, for ¢ > 0, we have

_ 2 !
Ko = Caaz, 174 cos (an—§r3/2), By = / V=0, d¥'  (DSab)
X

and, as t — 0o, the asymptotic forms of the Airy functions are

1 2 1 2
Al(—t) ~ ﬁl‘_l/“ sin (gl‘?’/z + %), Bl(—t) ~ ﬁl_l/‘" COoS (§t3/2 + %)
(D9a,b)

Therefore, the matching conditions are
Ca=ay, P Vrsin(Bu+7) Co Co=ay, >V cos (Ba+ 3) oo (D10G)

Finally, we have the connection formula

Cg 1 _ b4 kg
=5 242 — cot (an + Z> — tan <Z — Bg,,). (D11)

The left-hand side of this connection formula is bounded 0 < (1/ e 24w < (1 /2) since
Ay, is positive. Furthermore, we know that the 2nth eigenmode of the symmetric periodic
Sturm-Liouville problem has n zero crossing in the half-domain 0 < x < 1. Therefore, we
can bound B, by

b4 1 b4
nn+z —arctani < By, <nn+z. (D12)
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