We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter focuses on the mechanisms by which environmental exposures can induce endocrine disruption. It highlights the mechanisms that play important roles in developmental programming. Endocrine-disrupting chemicals, which mimic the activity of endogenous hormones and activate receptors are termed agonists, whereas those that inhibit receptor activity are termed antagonists. During the perinatal period programming of the endocrine axis occurs, making this a vulnerable period of exposure to endogenous and exogenous stimuli. Among the endocrine-disrupting chemicals (EDCs), xenoestrogens have garnered a significant amount of attention due to the well-known effects of the xenoestrogen diethylstilbestrol (DES) in humans, and the identification of many other estrogenic anthropogenic chemicals. Metabolism plays a key role in maintaining hormone homeostasis. Endocrine-disrupting chemicals can disturb normal hormone homeostasis, which can have both direct and indirect effects on the reproductive function of both wildlife and human populations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.