We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter is devoted to proving the Milnor–Wolf theorem, which states that a finitely generated solvable group has polynomial growth if and only if it is actually virtually nilpotent.
In this chapter we start applying the tools developed in Part I to study random walks.The notion of amenable groups is defined, and Kesten’s criterion for amenable groups is proved. We then move to define the notion of isopermitric dimension. Inequalities relating the volume growth of a group to the isoperimetric dimension and to the decay of the heat kernel are proved.
Let f be a
$C^2$
diffeomorphism on a compact manifold. Ledrappier and Young introduced entropies along unstable foliations for an ergodic measure
$\mu $
. We relate those entropies to covering numbers in order to give a new upper bound on the metric entropy of
$\mu $
in terms of Lyapunov exponents and topological entropy or volume growth of sub-manifolds. We also discuss extensions to the
$C^{1+\alpha },\,\alpha>0$
, case.
We give a lower estimate for the central value μ*n(e) of the nth convolution power μ*···*μ of a symmetric probability measure μ on a polycyclic group G of exponential growth whose support is finite and generates G. We also give a similar large time diagonal estimate for the fundamendal solution of the equation (∂/∂t + L)u = 0, where L is a left invariant sub-Laplacian on a unimodular amenable Lie group G of exponential growth.
We prove a homogenization formula for a sub-Laplacian are left invariant Hörmander vector fields) on a connected Lie group Gof polynomial growth. Then using a rescaling argument inspired from M. Avellanedaand F. H. Lin [2], we prove Harnack inequalities for the positive solutions of the equation (∂/∂t+ L)u= 0. Using these inequalities and further exploiting the algebraic structure of Gwe prove that the Riesz transforms , are bounded on Lq,1 < q <+∞ and from L1to weak-L1.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.