We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Schizophrenia (SZ) is associated with thalamic dysconnectivity. Compared to healthy controls (HCs), individuals with SZ have hyperconnectivity with sensory regions, and hypoconnectivity with cerebellar, thalamic, and prefrontal regions. Despite replication of this pattern in chronically ill individuals, less is known about when these abnormalities emerge in the illness course and if they are present prior to illness onset.
Methods
Resting-state functional magnetic resonance imaging data were collected from psychosis risk syndrome (PRS) youth (n = 45), early illness SZ (ESZ) (n = 74) patients, and HCs (n = 85). Age-adjusted functional connectivity, seeded from the thalamus, was compared among the groups.
Results
Significant effects of group were observed in left and right middle temporal regions, left and right superior temporal regions, left cerebellum, and bilateral thalamus. Compared to HCs, ESZ demonstrated hyperconnectivity to all temporal lobe regions and reduced connectivity with cerebellar, anterior cingulate, and thalamic regions. Compared to HCs, PRS demonstrated hyperconnectivity with the left and right middle temporal regions, and hypoconnectivity with the cerebellar and other thalamic regions. Compared to PRS participants, ESZ participants were hyperconnected to temporal regions, but did not differ from PRS in hypoconnectivity with cerebellar and thalamic regions. Thalamic dysconnectivity was unrelated to positive symptom severity in ESZ or PRS groups.
Conclusions
PRS individuals demonstrated an intermediate level of thalamic dysconnectivity, whereas ESZ showed a pattern consistent with prior observations in chronic samples. These cross-sectional findings suggest that thalamic dysconnectivity may occur prior to illness onset and become more pronounced in early illness stages.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.