We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This project looks into the time evolution of a wave function within a two-dimensional quantum well. We start by solving the time-dependent Schrödinger equation for stationary states in a quantum well. Next, we express any wave function as a linear combination of stationary states, allowing us to understand their time evolution. Two methods are presented: one relies on decomposing the wave function into a basis of stationary states and the other on discretisation of the time-dependent Schrödinger equation, incorporating three-point formulas for derivatives. These approaches necessitate confronting intricate boundary conditions and require maintaining energy conservation for numerical accuracy. We further demonstrate the methods using a wave packet, revealing fundamental phenomena in quantum physics. Our results demonstrate the utility of these methods in understanding quantum systems, despite the challenges in determining stationary states for a given potential. This study enhances our comprehension of the dynamics of quantum states in constrained systems, essential for fields like quantum computing and nanotechnology.
Welearn the key aspect of quantum mechanics – how to predict the future with Schrödinger’s equation. We learn the general recipe for solving time-dependent problems by diagonalizing the Hamiltonian to find the energy eigenvalues and eigenvectors.
An overview of the foundational aspects of complex dynamic systems is provided. This chapter serves as a reference for applications of complex dynamic systems concepts and methods to concrete topics. This chapter argues that complex dynamic systems is an ideal candidate for realizing a process approach in psychology, without it necessarily being a monolithic framework.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.