We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Stories are a pervasive phenomenon of human life. They also represent a cognitive tool to understand and make sense of the world and of its happenings. In this contribution we describe a narratology-based framework for modeling stories as a combination of different data structures and to automatically extract them from news articles. We introduce a distinction among three data structures (timelines, causelines, and storylines) that capture different narratological dimensions, respectively chronological ordering, causal connections, and plot structure. We developed the Circumstantial Event Ontology (CEO) for modeling (implicit) circumstantial relations as well as explicit causal relations and create two benchmark corpora: ECB+/CEO, for causelines, and the Event Storyline Corpus (ESC), for storylines. To test our framework and the difficulty in automatically extract causelines and storylines, we develop a series of reasonable baseline systems
In the past we experimented with variations of an approach we call semantic storytelling, in which we use multiple text analytics components including named entity recognition and event detection. This chapter summarizes some of our previous work with an emphasis on the detection of movement action events, and describes the long-term semantic storytelling vision as well as the setup and approach of our future work towards a robust technical solution, which is primarily driven by three industry use cases. Ultimately, we plan to contribute an implemented approach for semantic storytelling that makes use of various analytics services and that can be deployed in a flexible way in various industrial production environments.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.