We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Advances in assisted reproductive technology (ART) have created opportunities for preservation of the reproductive potential of young males with cancer. Semen cryopreservation is possible in most adolescents with cancer regardless of age or diagnosis. Awareness by physicians is even more essential when dealing with younger populations. Theoretically, testicular tissue from prepubertal boys facing gonadotoxic treatment could be banked for many years for spermatogonial stem cell transplantation. Male germline stem cells are the only cells in postnatal mammals that undergo self-renewal and transmit genes to subsequent generations, since all female germline stem cells cease their proliferation before birth. Future possible methods of restoring fertility might include the derivation of mature sperm cells from human embryonic stem cells. Embryoid bodies were shown to support maturation of the primordial germ cells into haploid male gametes, which when injected into oocytes round off the somatic diploid chromosome complement and develop into blastocysts.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.