We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To determine the feasibility of non-daily image-guided radiotherapy (RT) with volumetric-modulated arc therapy for pelvic cancer.
Methods:
Daily cone beam computed tomography (CBCT) images data of 21 patients (542 fractions) with pelvic cancer were used to simulate 5 non-daily imaging (DL) protocols (Alternate day: AD, First 5 + Weekly: FF+WL, Weekly: WL, First 5 fractions: FF and Alternate week: AW protocol). The residual errors in the lateral (X), longitudinal (Y), and vertical (Z) directions and 3D vector shifts of each non-DL protocol were explored. The planning target volume (PTV) margins were calculated using the van Herk’s formula according to population systematic and random error. Finally, the average time of each process from the start to stop of the treatment was used to calculate the number of patients treated per day to assess the treatment delivery capacity for different imaging protocols.
Results:
The 3D vector shift for the FF+WL protocol produced the greatest proportion of residual error ≤ 0·5 cm and showed the smallest random error in all three directions. However, the FF protocol produced the greatest proportion of residual error > 0·5 cm and revealed the largest magnitudes of systematic error in all three directions. Only the AD protocol can explore the PTV margin of less than 0·5 cm in all three directions. The AW protocol showed the maximum capacity of the treatment delivery, showed the highest number of patients treated per day. In contrast, the AW protocol also affects the treatment accuracy, showed the large residual error and PTV margin.
Findings:
Reducing the frequency of image-guided RT results in a high residual error. Non-daily image-guided RT strategies for pelvic irradiation should be applied for margins more than 0·5 cm. The number of patients treated per day, residual error and PTV margin are information to determine non-daily protocol applications that balance treatment delivery capacity and treatment accuracy.
To investigate the necessity of rotational shifts by considering dosimetric
impact of rotational errors on stereotactic body radiation therapy
(SBRT).
Materials and methods
20 lung patients with the lesion size <5 cm treated with SBRT have
been selected for dosimetric analysis. Three-dimensional dose has been
rotationally shifted (±1°, ±3°,
±5° for pitch, roll and yaw) and overlaid to the original
computed tomography images. The dose–volume histograms of
18-rotational plans of each patient were compared to those of the original
plan.
Results
No significant dosimetric differences were observed in target coverage. For
all of the cases up to 5° in any couch angle dose differences of
D99 and D95 were
<3%. Variations of conformity index were observed to be less
than 0·05. None of the organ at risk doses exceeded the dose limit.
The V20 differences of the ipsilateral and the
total lungs were less than 0·4%.
Conclusion
It has been found to be unnecessary to perform rotational shifts up to
5° for lung SBRT treatments; the translational shift is sufficient
for the cases used in this study. This method may be applied and tested
after planning and before treatment initiation to rule out exceptionally
extreme cases.
To evaluate the impact of couch translational shifts on dose–volume histogram (DVH) and radiobiological parameters [tumour control probability (TCP), equivalent uniform dose (EUD) and normal tissue complication probability (NTCP)] of volumetric modulated arc therapy (VMAT) plans and to develop a simple and swift method to predict the same online, on a daily basis.
Methods
In total, ten prostate patients treated with VMAT technology were selected for this study. The plans were generated using Eclipse TPS and delivered using Clinac ix LINAC equipped with a Millennium 120 multileaf collimator. In order to find the effect of systematic translational couch shifts on the DVH and radiobiological parameters, errors were introduced in the clinically accepted base plan with an increment of 1 mm and up to 5 mm from the iso-centre in both positive and negative directions of each of the three axis, x [right–left (R-L)], y [superior–inferior (S-I)] and z [anterior–posterior (A-P)]. The percentages of difference in these parameters (∆D, ∆TCP, ∆EUD and ∆NTCP) were analyzed between the base plan and the error introduced plans. DVHs of the base plan and the error plans were imported into the MATLAB software (R2013a) and an in-house MATLAB code was generated to find the best curve fitted polynomial functions for each point on the DVH, there by generating predicted DVH for planning target volume (PTV), clinical target volume (CTV) and organs at risks (OARs). Functions f(x, vj), f(y, vj) and f(z, vj) were found to represent the variation in the dose when there are couch translation shifts in R-L, S-I and A-P directions, respectively. The validation of this method was done by introducing daily couch shifts and comparing the treatment planning system (TPS) generated DVHs and radiobiological parameters with MATLAB code predicted parameters.
Results
It was noted that the variations in the dose to the CTV, due to both systematic and random shifts, were very small. For CTV and PTV, the maximum variations in both DVH and radiobiological parameters were observed in the S-I direction than in the A-P or R-L directions. ∆V70 Gy and ∆V60 Gy of the bladder varied more due to S-I shift whereas, ∆V40 Gy, ∆EUD and ∆NTCP varied due to A-P shifts. All the parameters in rectum were most affected by the A-P shifts than the shifts in other two directions. The maximum percentage of deviation between the TPS calculated and MATLAB predicted DVHs of plans were calculated for targets and OARs and were found to be less than 0·5%.
Conclusion
The variations in the parameters depend upon the direction and magnitude of the shift. The DVH curves generated by the TPS and predicted by the MATLAB showed good correlation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.