We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Phase-only Fresnel holograms have two major advantages over complex-valued or amplitude-only hologram. First, they can be displayed with a single phase-only SLM, leading to simplification on the holographic display system. Second, due to the high optical efficiency of phase-only holograms, the reconstructed image is brighter than that of an amplitude-only hologram. On the downside, the fidelity of the reconstructed image is degraded as a result of discarding the magnitude component of the hologram. In this chapter, a number of methods, each with pros and cons, for generating phase-only holograms are described. These methods can be divided into two types, iterative and the non-iterative. Iterative methods include the iterative Fresnel transform algorithm (IFTA) and its variants, which find their origin in the classical Gerchberg–Saxton algorithm (GSA). Reconstructed images of a phase-only hologram obtained with IFTA are generally good in quality, but the computation time is rather lengthy. Another iterative method, based on direct binary search (DBS), can be applied in generating binary phase-only holograms. Non-iterative methods are based on modifying the source image in certain ways prior to the generation of the hologram. These include noise addition, patterned phase addition, and downsampling. The modification is similar to overlaying a diffuser onto the image, so that the magnitude of the diffracted waves on the hologram is close to homogeneous. The phase component alone, therefore, can be taken to represent the hologram.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.