In this paper, we prove that the singular integral defined by
${{T}_{\Omega ,a}}f(x)=\text{p}\text{.}\text{v}\text{.}{{\int }_{{{\mathbb{R}}^{d}}}}\frac{\Omega (x-y)}{|x-y{{|}^{d}}}\cdot {{m}_{x,y}}a\cdot f(y)dy$is bounded on ${{L}^{p}}({{\mathbb{R}}^{d}})$ for $1\,<\,p\,<\,\infty $ and is of weak type (1,1), where $\Omega \,\in L\text{lo}{{\text{g}}^{+}}L({{S}^{d-1}})$ and ${{m}_{x,y}}a\,=:\,\int{_{0}^{1}}\,a(sx\,+\,(1\,-\,s)y)ds$, with $a\,\in \,{{L}^{\infty }}({{\mathbb{R}}^{d}})\,$ satisfying some restricted conditions.