We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A good understanding of DG (differential graded) algebra is essential in our approach to derived categories. By DG algebra, we mean DG rings, DG modules, DG categories and DG functors. The first section is on cohomologically graded rings and modules, with a discussion of the monoidal braiding (i.e. the Koszul sign rule). After that we study DG rings, DG modules and operations on them. We go on to discuss DG categories, DG functors between them and morphisms between DG functors. We recall the DG category C(M) of complexes in an abelian category M.A new feature we introduce is the DG category C(A,M) of DG A-modules in M, where A is a DG ring and M is an abelian category. This includes as special cases the category C(M) mentioned above, and the category C(A) of DG A-modules over a DG ring A. Another new feature is the distinction between the DG category C(A,M) and its strict subcategory Cstr(A,M), whose morphisms are the degree 0 cocycles, and it is an abelian category.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.