We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter begins with a discussion of classes of problem complexity. It then focuses on hierarchical pyramids that have been accepted for the last three decades as computational models of the visual system of primates, including humans. Anatomical and behavioral results that support this claim are reviewed. First, the speed-accuracy tradeoff results in visual perception are reviewed. Second, mental size transformation is described and it is shown that they can be explained by a pyramid model. With these results related to visual perception in hand, it is shown how the pyramid model can be applied to the TSP. Pyramid models are characterized by self-similarity across space and scale. This self-similarity is a form of invariance, also known as symmetry. A pyramid model produces near-optimal TSP tours by using a global-to-local (coarse-to-fine) sequence of computational steps. Good performance of pyramid models on TSP comes with a price when the geometry of a TSP problem is perturbed by inserting obstacles. Finally, subjects are tested in a real-life application of the TSP, where they collect tennis balls on a tennis court. The fact that humans are capable of producing near-optimal TSP tours in almost “no time” suggests that they solve the task of minimizing a tour's length without ever measuring the length of the tour. Instead, they infer the concept of direction in the search space, and use the direction, rather than the distance, when they navigate within the problem spaces.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.