We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To enhance indicated prevention in patients with a clinical high risk (CHR) for psychosis, recent research efforts have been increasingly directed towards estimating the risk of developing psychosis on an individual level using multivariable clinical prediction models. The aim of this study was to systematically review the methodological quality and reporting of studies developing or validating such models.
Method
A systematic literature search was carried out (up to 14 March 2016) to find all studies that developed or validated a clinical prediction model predicting the transition to psychosis in CHR patients. Data were extracted using a comprehensive item list which was based on current methodological recommendations.
Results
A total of 91 studies met the inclusion criteria. None of the retrieved studies performed a true external validation of an existing model. Only three studies (3.5%) had an event per variable ratio of at least 10, which is the recommended minimum to avoid overfitting. Internal validation was performed in only 14 studies (15%) and seven of these used biased internal validation strategies. Other frequently observed modeling approaches not recommended by methodologists included univariable screening of candidate predictors, stepwise variable selection, categorization of continuous variables, and poor handling and reporting of missing data.
Conclusions
Our systematic review revealed that poor methods and reporting are widespread in prediction of psychosis research. Since most studies relied on small sample sizes, did not perform internal or external cross-validation, and used poor model development strategies, most published models are probably overfitted and their reported predictive accuracy is likely to be overoptimistic.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.