We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the impact of relativistic SZ corrections on Planck measurements of massive galaxy clusters, finding that they have a significant impact at the $\approx$5–15% and up to $\approx$ 3$\sigma$ level. We investigate the possibility of constraining temperature directly from these SZ measurements but find that only weak constraints are possible for the most significant detections; for most clusters, an external temperature measurement is required to correctly measure integrated Compton-y. We also investigate the impact of profile shape assumptions and find that these have a small but non-negligible impact on measured Compton-y, at the $\approx$ 5% level. Informed by the results of these investigations, we recalibrate the Planck SZ observable-mass scaling relation, using the updated NPIPE data release and a larger sample of X-ray mass estimates. Along with the expected change in the high-mass end of the scaling relation, which does not impact Planck mass estimation, we also find hints of a low-mass deviation, but this requires better understanding of the selection function in order to confirm.
We present high-resolution observations of nearby ($z\lesssim0.1$) galaxies that have hosted Type Ia supernovae to measure systemic spectroscopic redshifts using the wide field spectrograph (WiFeS) instrument on the Australian National University 2.3 m telescope at Siding Spring Observatory. While most of the galaxies targeted have previous spectroscopic redshifts, we provide demonstrably more accurate and precise redshifts with competitive uncertainties, motivated by potential systematic errors that could bias estimates of the Hubble constant ($H_0$). The WiFeS instrument is remarkably stable; after calibration, the wavelength solution varies by $\lesssim$0.5 Å in red and blue with no evidence of a trend over the course of several years. By virtue of the $25\times 38$ arcsec field of view, we are always able to measure the redshift of the galactic core, or the entire galaxy in the cases where its angular extent is smaller than the field of view, reducing any errors due to galaxy rotation. We observed 185 southern SN Ia host galaxies and measured the redshift of each via at least one spatial region of (a) the core and (b) the average over the full-field/entire galaxy. Overall, we find stochastic differences between historical redshifts and our measured redshifts on the order of $\lesssim10^{-3}$ with a mean offset of 4.3${\times 10^{-5}}$ and normalised median absolute deviation of 1.2${\times 10^{-4}}$. We show that a systematic redshift offset at this level is not enough to bias cosmology, as $H_0$ shifts by $+0.1$ km s$^{-1}$ Mpc$^{-1}$ when we replace Pantheon+ redshifts with our own, but the occasional large differences are interesting to note.
The report of a detection of an absorption profile centred at 78 MHz in the continuum radio background spectrum by the EDGES experiment and its interpretation as the redshifted 21 cm signal of cosmological origin has become one of the most debated results of observational cosmology in recent times. The cosmological 21 cm has long been proposed to be a powerful probe for observing the early Universe and tracing its evolution over cosmic time. Even though the science case is well established, measurement challenges posed on the technical ground are not fully understood to the level of claiming a successful detection. EDGES’s detection has naturally motivated a number of experimental attempts worldwide to corroborate the findings. In this paper, we present a precision cross-correlation spectrometer HYPEREION purpose-designed for a precision radio background measurement between 50–120 MHz to detect the absorption profile reported by the EDGES experiment. HYPEREION implements a pre-correlation signal processing technique that self-calibrates any spurious additive contamination from within the system and delivers a differential measurement of the sky spectrum and a reference thermal load internal to the system. This ensures an unambiguous ‘zero-point’ of absolute calibration of the purported absorption profile. We present the system design, measurement equations of the ideal system, systematic effects in the real system, and finally, an assessment of the real system output for the detection of the absorption profile at 78 MHz in the continuum radio background spectrum.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.