We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The impact of a wide range of post-Keplerian perturbing accelerations, of whatever physical origin, on different types of observation-related quantities (Keplerian orbital elements, anomalistic, draconitic, and sidereal orbital periods, two-body range and range rate, radial velocity curve and radial velocity semiamplitude of spectroscopic binaries, astrometric angles RA and dec., times of arrival of binary pulsars, characteristic timescales of transiting exoplanets along with their sky-projected spin-orbit angle) is analytically calculated with standard perturbative techniques in a unified and consistent framework. Both instantaneous and averaged orbital shifts are worked out to the first and second order in the perturbing acceleration. Also, mixed effects, due to the simultaneous action of at least two perturbing accelerations, are treated.
The precessions of the Keplerian orbital elements induced by several modified models of gravity are calculated. The latter ones are Yukawa, power-law, logarithmic, dark matter density profiles (exponential and power-law), once per revolution accelerations, constant accelerations, and Lorentz-violating symmetry.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.