We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present recent results on the model companions of set theory, placing them in the context of a current debate in the philosophy of mathematics. We start by describing the dependence of the notion of model companionship on the signature, and then we analyze this dependence in the specific case of set theory. We argue that the most natural model companions of set theory describe (as the signature in which we axiomatize set theory varies) theories of $H_{\kappa ^+}$, as $\kappa $ ranges among the infinite cardinals. We also single out $2^{\aleph _0}=\aleph _2$ as the unique solution of the continuum problem which can (and does) belong to some model companion of set theory (enriched with large cardinal axioms). While doing so we bring to light that set theory enriched by large cardinal axioms in the range of supercompactness has as its model companion (with respect to its first order axiomatization in certain natural signatures) the theory of $H_{\aleph _2}$ as given by a strong form of Woodin’s axiom $(*)$ (which holds assuming $\mathsf {MM}^{++}$). Finally this model-theoretic approach to set-theoretic validities is explained and justified in terms of a form of maximality inspired by Hilbert’s axiom of completeness.
We prove that there exists a structure M whose monadic second order theory is decidable, and such that the first-order theory of every expansion of M by a constant is undecidable.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.