We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This Element introduces a young field, the 'philosophy of mathematical practice'. We first offer a general characterisation of the approach to the philosophy of mathematics that takes mathematical practice seriously and contrast it with 'mathematical philosophy'. The latter is traced back to Bertrand Russell and the orientation referred to as 'scientific philosophy' that was active between 1850 and 1930. To give a better sense of the field, the Element further contains two examples of topics studied, that of mathematical structuralism and visual thinking in mathematics. These are in part presented from a methodological point of view, focussing on mathematics as an activity and questions related to how mathematics develops. In addition, the Element contains several examples from mathematics, both historical and contemporary , to illustrate and support the philosophical points.
The chapter introduces the iterative conception, according to which every set appears at one level or another of the mathematical structure known as the cumulative hierarchy, as well as theories based on the conception. The chapter presents various accounts of the iterative conception: the constructivist account, the dependency account and my own minimalist account. It is argued that the minimalist account is to be preferred to the others. A method – which I call inference to the best conception – is then described to defend the correctness of the iterative conception so understood. This method requires one to show that the iterative conception fares better than other conceptions with respect to a number of desiderata on conceptions of set. This provides additional motivation for exploring alternative conceptions of set in the remainder of the book.
Eliminative and non-eliminative forms of mathematical structuralism contain insights that every decent philosophical account of mathematicalstructures has to accommodate. So the challenge is to incorporate the insights in the nature of structure that have been acquired by eliminative and non-eliminative mathematical structuralists and to do better where existing accounts have fallen short. It is in this spirit that I try to connect my account of mathematical structure with elements of leading versions of mathematical structuralism.
This chapter is of a transitional nature. I turn to the connection between arbitrary object theory and the notion of mathematical structuralism. Arbitrary object theory is put asidefor a while, and I concentrate on forms of eliminative and non-eliminative structuralism in the philosophy of mathematics.
Building on the seminal work of Kit Fine in the 1980s, Leon Horsten here develops a new theory of arbitrary entities. He connects this theory to issues and debates in metaphysics, logic, and contemporary philosophy of mathematics, investigating the relation between specific and arbitrary objects and between specific and arbitrary systems of objects. His book shows how this innovative theory is highly applicable to problems in the philosophy of arithmetic, and explores in particular how arbitrary objects can engage with the nineteenth-century concept of variable mathematical quantities, how they are relevant for debates around mathematical structuralism, and how they can help our understanding of the concept of random variables in statistics. This fully worked through theory will open up new avenues within philosophy of mathematics, bringing in the work of other philosophers such as Saul Kripke, and providing new insights into the development of the foundations of mathematics from the eighteenth century to the present day.
The present work is a systematic study of five frameworks or perspectives articulating mathematical structuralism, whose core idea is that mathematics is concerned primarily with interrelations in abstraction from the nature of objects. The first two, set-theoretic and category-theoretic, arose within mathematics itself. After exposing a number of problems, the Element considers three further perspectives formulated by logicians and philosophers of mathematics: sui generis, treating structures as abstract universals, modal, eliminating structures as objects in favor of freely entertained logical possibilities, and finally, modal-set-theoretic, a sort of synthesis of the set-theoretic and modal perspectives.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.