We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the limiting behavior of the discrete spectra associated to the principal congruence subgroups of a reductive group over a number field. While this problem is well understood in the cocompact case (i.e., when the group is anisotropic modulo the center), we treat groups of unbounded rank. For the groups $\text{GL}(n)$ and $\text{SL}(n)$ we show that the suitably normalized spectra converge to the Plancherel measure (the limit multiplicity property). For general reductive groups we obtain a substantial reduction of the problem. Our main tool is the recent refinement of the spectral side of Arthur’s trace formula obtained in [Finis, Lapid, and Müller, Ann. of Math. (2) 174(1) (2011), 173–195; Finis and Lapid, Ann. of Math. (2) 174(1) (2011), 197–223], which allows us to show that for $\text{GL}(n)$ and $\text{SL}(n)$ the contribution of the continuous spectrum is negligible in the limit.
Let $\Gamma $ be a rank-one arithmetic subgroup of a semisimple Lie group $G$. For fixed $K$-Type, the spectral side of the Selberg trace formula defines a distribution on the space of infinitesimal characters of $G$, whose discrete part encodes the dimensions of the spaces of square-integrable $\Gamma $-automorphic forms. It is shown that this distribution converges to the Plancherel measure of $G$ when $\Gamma $ shrinks to the trivial group in a certain restricted way. The analogous assertion for cocompact lattices $\Gamma $ follows from results of DeGeorge-Wallach and Delorme.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.