We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter centres the encounter between patient and psychiatrist, and between mandate Palestine and new methods of psychiatric treatment being developed around the world in the 1930s and 1940s. In particular, it focuses on three distinct methods of treatment: patient work or occupational therapy; insulin- and cardiazol-shock therapies; and electro-convulsive therapy. All in different ways sought to work (on) the body to cure the mind, and were introduced into private and government mental institutions in mandate Palestine in the decade before 1948. Though these techniques tantalised with the promise of transcending context through their universal applicability, this chapter highlights instead how these psychiatric techniques travelled to and were deployed within Palestine in a highly uneven way, and attempts to piece together some sense of how patients and their families responded to and understood these treatments as well.
Diabetic ketoacidosis (DKA) is a critical state of hyperglycemia that results in both hyperketonemia and acidosis. Despite elevated serum glucose in DKA, the cells are “starving” due to the lack of insulin to facilitate glucose uptake. Therefore, fatty acids are utilized, which produce ketones and an anion gap ketoacidosis.
Hyperglycemia causes glucose to spill into the urine, resulting in an osmotic diuresis that leads to dehydration and electrolyte derangements. The acidosis causes K+ to shift out of cells, leading to serum hyperkalemia. K+ and bicarbonate are lost in the urine, depleting whole body potassium. The loss of bicarbonate further exacerbates the acidosis.
Fetal restriction (FR) alters insulin sensitivity, but it is unknown how the metabolic profile associated with restriction affects development of the dopamine (DA) system and DA-related behaviors. The Netrin-1/DCC guidance cue system participates in maturation of the mesocorticolimbic DA circuitry. Therefore, our objective was to identify if FR modifies Netrin-1/DCC receptor protein expression in the prefrontal cortex (PFC) at birth and mRNA in adulthood in rodent males. We used cultured HEK293 cells to assess if levels of miR-218, microRNA regulator of DCC, are sensitive to insulin. To assess this, pregnant dams were subjected to a 50% FR diet from gestational day 10 until birth. Medial PFC (mPFC) DCC/Netrin-1 protein expression was measured at P0 at baseline and Dcc/Netrin-1 mRNA levels were quantified in adults 15 min after a saline/insulin injection. miR-218 levels in HEK-293 cells were measured in response to insulin exposure. At P0, Netrin-1 levels are downregulated in FR animals in comparison to controls. In adult rodents, insulin administration results in an increase in Dcc mRNA levels in control but not FR rats. In HEK293 cells, there is a positive correlation between insulin concentration and miR-218 levels. Since miR-218 is a Dcc gene expression regulator and our in vitro results show that insulin regulates miR-218 levels, we suggest that FR-induced changes in insulin sensitivity could be affecting Dcc expression via miR-218, impacting DA system maturation and organization. As fetal adversity is linked to nonadaptive behaviors later in life, this may contribute to early identification of vulnerability to chronic diseases associated with fetal adversity.
We previously reported that the addition of a specified mulberry fruit extract (MFE) to rice consistently reduces post-prandial glycaemic (PPG) and post-prandial insulinemic (PPI) responses. This research tested whether this effect generalises to a broad range of rice types, reflecting the wide variation in rice characteristics known to influence glycaemic responses. In a randomised, balanced, partial factorial crossover design, Sona Masoori (SM), Bora Saul (BS), Gobindobogh (Gb) and Banskati (Bn) rices were tested with and without 0·37 g MFE. Healthy, normal-weight Indian adults (N 120) each consumed four of the eight possible boiled rice meals, all containing about 50 g available carbohydrate. The primary outcome was the effect of MFE on PPG, expressed as the percentage change in the positive, incremental AUC over 2 h. The mean effect of MFE on PPG for all rice types combined was −11·4 % (P < 0·003). The reduction in PPG was in a qualitatively similar range for all rice types (–9·8 to −15·1 %), and this was statistically significant for Bn. MFE also reduced the corresponding PPI response to all rice types combined by a mean of 10·1 % (P < 0·001; range −6·1 to −13·4 %), and the reduction in PPI was statistically significant for SM, Gb and BS. In conclusion, addition of 0·37 g MFE modestly reduced PPG and PPI responses to rices in general, and the effects were statistically significant for specific rice types.
Glycemic control for elderly diabetics is a challenge. Treatment satisfaction reflects this control.
Objectives
To determine the factors associated with insulin treatment satisfaction among type 2 diabetic elderly.
Methods
A cross-sectional study on 86 type 2 diabetic insulin dependent elderly recruited from the outpatient endocrinology consultation during June and July 2021. We applied the Diabetes Treatment Satisfaction Questionnaire (DTSQ) and geriatric assessment scores.
Results
Three quarters of the patients were satisfied with the insulin therapy. Satisfied patients had significantly less history of hospitalization and more regular follow-up. Diabetic neuropathy medications were significantly less taken by satisfied patients. The number of daily insulin injections was significantly higher in the unsatisfied patients. Diabetic foot was significantly more frequent in unsatisfied patients. Satisfied patients were significantly less depressed, more independent in both basic and instrumental activities of daily living, without memory impairment, in better nutritional status and not falling. Higher DTSQ scores were associated with regular follow up (β 7.92, 95% CI 1.83 to 34.3). Lower DTSQ scores were associated with the history of hospitalization (β 0.12, 95% CI 0.02 to 0.58), the taking of medications for diabetic neuropathy (β 0.07, 95% CI 0.09 to 0.51), the high number of insulin injections (β 0.43, 95% CI 0.19 to 0.97) and the presence of diabetic foot (β 0.17, 95% CI 0.01 to 0.38).
Conclusions
Risk factors for patients’ insulin dissatisfaction should be detected early and managed appropriately to improve patients’satisfaction and consequently their well-being.
Although depression is one of the most common diseases among older people, it is still underdiagnosed due to frequent misleading symptoms.
Objectives
The aims of our study were to assess depression in type 2 diabetic insulin-dependent older adults and to identify factors associated with depression among this population.
Methods
A cross-sectional study on 100 type 2 diabetic insulin-dependent elderly recruited from the outpatient endocrinology consultation during June and July 2021. We applied the geriatric assessment scores: the Geriatric Depression Scale 15-item, the KATS score, the Lawton scale. the five-word test, the Mini Nutritional Assessment and the Timed Up and Go test.
Results
The mean age of the population was 70.8±5.8 years with sex ratio of 0.85. Depression was noted among 57% of the patients who were distributed as follow: around one fifth (21%) had mild depression while 36% had moderate to severe depression. Around one quarter of the patients (24%) were dependent in the basic activities of daily living. Depression was significantly associated with dependency (β = 5.27; 95% CI, 1.01 to 27.35), ophthalmologic diseases (β = 8.81; 95% CI, 2.18 to 35.63), high frequency of nocturia (β = 3.71; 95% CI, 1.24 to 11.05) and high frequency of bleeding at insulin injection site (β = 4.21; 95% CI, 1.49 to 11.84).
Conclusions
Our findings suggest that the prevalence of depression is high among type 2 diabetic insulin-dependent older adults. Early assessment of depression’s risk factors is a major pillar of the comprehensive care of our seniors.
Does eating more carbohydrates, or fats, cause one to put on more weight? Are ketone bodies toxins or vital products that keep us alive during starvation? Does the concept of 'fat-burning exercise' hold true? In this game-changing book, Keith Frayn, an international expert in human metabolism and nutrition, dispels common misconceptions about human metabolism, explaining in everyday language the important metabolic processes that underlie all aspects of our daily lives. Illustrated throughout with clear diagrams of metabolic processes, Frayn describes the communication systems that enable our different organs and tissues to cooperate, for instance in providing fuel to our muscles when we exercise, and in preserving our tissues during fasting. He explores the impressive adaptability of human metabolism and discusses the metabolic disorders that can arise when metabolism 'goes wrong'. For anyone sceptical of information about diet and lifestyle, this concise book guides the reader through what metabolism really involves.
To evaluate the effects of pistachio consumption on the glucoregulatory status in individuals with a high risk of CVD, a systematic review and meta-analysis of randomised controlled trials (RCT) were conducted. Online databases including PubMed, Scopus, Web of Science and Cochrane Library were searched from inception until June 2019. Human trials that reported data for fasting blood sugar (FBS), fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) were included. Data were pooled using the random effect models and expressed as weighted mean difference (WMD) with 95 % CI. Eight RCTs were included in the analyses. Pistachio consumption, exchanged isocalorically for other foods, decreased FBS (WMD: −5·32 mg/dl, 95 % CI (−7·80, −2·64), P < 0·001) and insulin (WMD: −1·86 µIU/ml, 95 % CI (−3·13, −0·59), P < 0·01) concentrations in individuals with a high risk of CVD. However, no changes were observed in the levels of HOMA-IR between the groups (WMD: −0·66, 95 % CI (−1·89, 0·58), P = 0·30). Pistachio consumption may improve glucoregulatory status in individuals at risk for CVD, as evidenced by reduced FBS and insulin concentrations. However, due to the limited availability of studies with diabetic cases and relatively small sample sizes of available studies, well-designed trials with adequate sample sizes aimed at diabetic populations are recommended.
Complete nutrition drinks with a low glycemic index (GI) provide nutritional support and prevent hyperglycaemia. The present study identified GI and factors predicting individual glucose response to a new complete nutrition drink. A randomised cross-over controlled trial was conducted in eighteen healthy volunteers (FPG < 100 mg/dl). Complete nutrition drinks containing retrograded starch, glucose solution and white bread were assigned in a random sequence with 14-day wash-out intervals. Plasma glucose and insulin levels were measured from baseline to 180 min after consuming each food. Results show the adjusted GIs of the drink was 48.2 ± 10.4 and 46.7 ± 12.7 with glucose and white bread as the reference, respectively. While the drink has low GI (<55), the individual glucose responses varied (GI: 7–149). Comparing characters in individual GI < 55 (n = 12) and GI ≥ 55 (n = 6) groups revealed significantly higher baseline insulin in the low GI group (14.86 ± 16.51 μIU/ml v. 4.9 ± 3.4 μIU/ml, P < 0·05). The correlation matrix confirms only two predictive factors for having individual GI <55 were baseline insulin (r = 0·5, P = 0·03) and HOMA-IR (r = 0·55, P = 0·02). ROC curve reveals fasting insulin above 1.6 μIU/ml and HOMA-IR above 1.05 as the cut-off values. The findings suggest that the complete nutrition drink has a low GI, but there was wide variability in individual responses partly explained by fasting insulin levels and HOMA-IR. Screening for fasting insulin and HOMA-IR may be encouraged to maximise the functional benefit of the drink.
Extracts of mulberry have been shown to reduce post-prandial glucose (PPG) and insulin (PPI) responses, but reliability of these effects and required doses and specifications are unclear. We previously found that 1·5 g of a specified mulberry fruit extract (MFE) significantly reduced PPG and PPI responses to 50 g carbohydrate as rice porridge, with no indications of intolerance. The trials reported here aimed to replicate that work and assess the efficacy of lower MFE doses, using boiled rice as the carbohydrate source. Two separate randomised controlled intervention studies were carried out with healthy Indian males and females aged 20–50 years (n 84 per trial), with PPG area under the curve over 2 h as the primary outcome. Trial 1 used doses of 0, 0·37, 0·75, 1·12 and 1·5 g MFE in boiled rice and 0 or 1·5 g MFE in rice porridge. Trial 2 used doses of 0, 0·04, 0·12, 0·37 g MFE in boiled rice. In trial 1, relative to control, all MFE doses significantly decreased PPG (–27·2 to −22·9 %; all P ≤ 0·02) and PPI (–34·6 to −14·0 %, all P < 0·01). Breath hydrogen was significantly increased only at 1·5 g MFE (in rice porridge), and self-reported gastrointestinal symptoms were uniformly low. In trial 2, only 0·37 g MFE significantly affected PPG (–20·4 %, P = 0·002) and PPI (–17·0 %, P < 0·001). Together, these trials show that MFE in doses as low as 0·37 g can reliably reduce PPG and PPI responses to a carbohydrate-rich meal, with no apparent adverse effects.
This study aimed to evaluate the cardiovascular health-related effects of consuming ghee in the usual diet. Thirty healthy men and women were studied in a free-living outpatient regimen. The participants were instructed for the isoenergetic inclusion of ghee or olive oil in their diets for 4 weeks using a randomised crossover design. At the end of run-in (baseline), 2-week wash-out and interventions, fasting blood samples were drawn. In addition, 2-h postprandial blood samples were collected after ingestion of a meal containing olive oil or ghee at week 4 of each dietary intervention. Body weight was not different between the two interventions. Compared with the olive oil, the diet with ghee increased fasting plasma apo-B (apo B) (0·09, 95 % CI 0·02, 0·17 g/l, P = 0·018), non-HDL-cholesterol (non-HDL-cholesterol) (0·53, 95 % CI 0·01, 1·05 mmol/l, P = 0·046) and LDL-cholesterol did not differ significantly between diet groups (0·29, 95 % CI –0·05, 0·63 mmol/l, P = 0·092), but had no significant effect on total cholesterol:HDL-cholesterol ratio (0·75, 95 % CI − 0·24 to 1·74 mmol/l, P = 0·118). No significant difference was observed in fasting as well as 2-h postprandial plasma TAG, glucose, insulin and plasminogen activator inhibitor-1 concentrations. This study showed that ghee that is predominantly saturated fats had an increasing effect on plasma apo B and non-HDL-cholesterol compared with olive oil, adding further evidence to the existing recommendations to replace dietary fats high in SFA with dietary fats high in unsaturated fats to reduce CVD risk.
Dietary interventions to delay carbohydrate digestion or absorption can effectively prevent hyperglycaemia in the early postprandial phase. L-arabinose can specifically inhibit sucrase. It remains to be assessed whether co-ingestion of L-arabinose with sucrose delays sucrose digestion, attenuates subsequent glucose absorption and impacts hepatic glucose output. In this double-blind, randomised crossover study, we assessed blood glucose kinetics following ingestion of a 200-ml drink containing 50 g of sucrose with 7·5 g of L-arabinose (L-ARA) or without L-arabinose (CONT) in twelve young, healthy participants (24 ± 1 years; BMI: 22·2 ± 0·5 kg/m2). Plasma glucose kinetics were determined by a dual stable isotope methodology involving ingestion of (U-13C6)-glucose-enriched sucrose, and continuous intravenous infusion of (6,6–2H2)-glucose. Peak glucose concentrations reached 8·18 ± 0·29 mmol/l for CONT 30 min after ingestion. In contrast, the postprandial rise in plasma glucose was attenuated for L-ARA, because peak glucose concentrations reached 6·62 ± 0·18 mmol/l only 60 min after ingestion. The rate of exogenous glucose appearance for L-ARA was 67 and 57 % lower compared with CONT at t = 15 min and 30 min, respectively, whereas it was 214 % higher at t = 150 min, indicating a more stable absorption of exogenous glucose for L-ARA compared with CONT. Total glucose disappearance during the first hour was lower for L-ARA compared with CONT (11 ± 1 v. 17 ± 1 g, P < 0·0001). Endogenous glucose production was not differentially affected at any time point (P = 0·27). Co-ingestion of L-arabinose with sucrose delays sucrose digestion, resulting in a slower absorption of sucrose-derived glucose without causing adverse effects in young, healthy adults.
The abnormal animal featured here is a type of whippet that has twice as much muscle mass as the normal breed due to a mutation. Similar mutations have been found in cattle, horses, and people. In order to see how this can happen, we discuss how genes control tissue growth in general via the insulin pathway.
The double burden of malnutrition (DBM) has been described in many low-/middle-income countries. We investigated food addiction, thyroid hormones, leptin, the lipid/glucose profile and body composition in DBM children/adolescents. Subjects were allocated into groups according to nutritional status: control (C, n 28), weight excess (WE, n 23) and DBM (WE plus mild stunting, n 22). Both the DBM and WE groups showed higher mean insulin concentrations than the control (DBM = 57·95 (95 % CI 47·88, 70·14) pmol/l, WE = 74·41 (95 % CI 61·72, 89·80) pmol/l, C = 40·03 (95 % CI 34·04, 47·83) pmol/l, P < 0·001). WE and DBM showed more food addiction symptoms than the control (3·11 (95 % CI 2·33, 3·89), 3·41 (95 % CI 2·61, 4·20) and 1·66 (95 % CI 0·95, 2·37)). In DBM individuals, addiction symptoms were correlated with higher body fat and higher insulin and leptin levels. These data provide preliminary evidence consistent with the suggestion that DBM individuals have a persistent desire to eat, but further studies are required to confirm these results in a larger study. These hormonal changes and high body fat contribute to the development of diabetes in long term.
Anti-diabetic actions of Camellia sinensis leaves, used traditionally for type 2 diabetes (T2DM) treatment, have been determined. Insulin release, membrane potential and intra-cellular Ca were studied using the pancreatic β-cell line, BRIN-BD11 and primary mouse pancreatic islets. Cellular glucose-uptake/insulin action by 3T3-L1 adipocytes, starch digestion, glucose diffusion, dipeptidyl peptidase-4 (DPP-IV) activity and glycation were determined together with in vivo studies assessing glucose homoeostasis in high-fat-fed (HFF) rats. Active phytoconstituents with insulinotropic activity were isolated using reversed-phase HPLC, LCMS and NMR. A hot water extract of C. sinensis increased insulin secretion in a concentration-dependent manner. Insulinotropic effects were significantly reduced by diazoxide, verapamil and under Ca-free conditions, being associated with membrane depolarisation and increased intra-cellular Ca2+. Insulin-releasing effects were observed in the presence of KCl, tolbutamide and isobutylmethylxanthine, indicating actions beyond K+ and Ca2+ channels. The extract also increased glucose uptake/insulin action in 3T3L1 adipocyte cells and inhibited protein glycation, DPP-IV enzyme activity, starch digestion and glucose diffusion. Oral administration of the extract enhanced glucose tolerance and insulin release in HFF rats. Extended treatment (250 mg/5 ml per kg orally) for 9 d led to improvements of body weight, energy intake, plasma and pancreatic insulin, and corrections of both islet size and β-cell mass. These effects were accompanied by lower glycaemia and significant reduction of plasma DPP-IV activity. Compounds isolated by HPLC/LCMS, isoquercitrin and rutin (464·2 Da and 610·3 Da), stimulated insulin release and improved glucose tolerance. These data indicate that C. sinensis leaves warrant further evaluation as an effective adjunctive therapy for T2DM and source of bioactive compounds.
To provide evidence to the link between serotonin (5-HT), energy metabolism, and the human obese phenotype, the present study investigated the binding and function of the platelet 5-HT transporter (SERT), in relation to circulating insulin, leptin, and glycolipid metabolic parameters.
Methods
Seventy-four drug-free subjects were recruited on the basis of divergent body mass index (BMIs) (16.5-54.8 Kg/m2). All subjects were tested for their blood glycolipid profile together with platelet [3H]-paroxetine ([3H]-Par) binding and [3H]-5-HT reuptake measurements from April 1st to June 30th, 2019.
Results
The [3H]-Par Bmax (fmol/mg proteins) was progressively reduced with increasing BMIs (P < .001), without changes in affinity. Moreover, Bmax was negatively correlated with BMI, waist/hip circumferences (W/HC), triglycerides (TD), glucose, insulin, and leptin, while positively with high-density lipoprotein (HDL) cholesterol (P < .01). The reduction of 5-HT uptake rate (Vmax, pmol/min/109 platelets) among BMI groups was not statistically significant, but Vmax negatively correlated with leptin and uptake affinity values (P < .05). Besides, [3H]-Par affinity values positively correlated with glycemia and TD, while [3H]-5-HT reuptake affinity with glycemia only (P < .05). Finally, these correlations were specific of obese subjects, while, from multiple linear-regression analysis conducted on all subjects, insulin (P = .006) resulting negatively related to Bmax independently from BMI.
Conclusions
Present findings suggest the presence of a possible alteration of insulin/5-HT/leptin axis in obesity, differentially impinging the density, function, and/or affinity of the platelet SERT, as a result of complex appetite/reward-related interactions between the brain, gut, pancreatic islets, and adipose tissue. Furthermore, they support the foremost cooperation of peptides and 5-HT in maintaining energy homeostasis.
n-3 Long-chain PUFA (LCPUFA) can improve cardiometabolic blood markers, but studies in children are limited. SNP in the FADS genes, which encode fatty acid desaturases, influence endogenous LCPUFA production. Moreover, SNP in genes that encode PPAR and apoE may modulate the effects of n-3 LCPUFA. We explored whether FADS polymorphisms were associated with blood cholesterol and TAG, insulin and glucose and whether polymorphisms in PPAR and APOE modified associations between FADS or n-3 LCPUFA status and the cardiometabolic blood markers. We measured fasting cholesterol and TAG, insulin, glucose and n-3 LCPUFA in 757 Danish 8–11-year-old children and genotyped SNP in FADS (rs1535 and rs174448), PPARG2 (rs1801282), PPARA (rs1800206) and APOE (rs7412+rs429358). Carriage of two FADS rs174448 major alleles was associated with lower TAG (P = 0·027) and higher HDL-cholesterol (P = 0·047). Blood n-3 LCPUFA was inversely associated with TAG and insulin in PPARG2 minor allele carriers and positively with LDL-cholesterol in major allele homozygotes (Pn-3 LCPUFA × rs180182 < 0·01). Associations between n-3 LCPUFA and cardiometabolic markers were not modified by APOE genotype (Pn-3 LCPUFA × APOE > 0·11), but interaction between FADS rs1535 and APOE showed that rs1535 major allele homozygotes who also carried APOE2 had higher HDL-cholesterol than all other genotype combinations (Prs1535 × APOE = 0·019, pairwise-P < 0·05). This indicates that FADS genotypes, which increase endogenous LCPUFA production, may beneficially affect children’s cardiometabolic profile in a partly APOE-dependent manner. Also, the degree to which children benefit from higher n-3 LCPUFA intake may depend on their PPARG2 genotype.
Control of glucose levels in diabetics is difficult during illness and perioperatively; they are affected by counter-regulatory hormones, unpredictable eating, lack of exercise and many other factors. Tight control is important: it improves outcomes in critically ill patients and reduces infection rates. A variety of different methods have emerged to administer IV insulin, inculding fixed and variable rate insulin infusions. This chapter provides a tutorial on variable rate insulin infusions, including a worked example, what monitoring is required and possible pitfalls.
Managing diabetes during surgery is complex. Adverse outcomes associated with poor preoperative diabetes management includes higher morbidity and mortality, higher risk of diabetic ketoacidosis and hypoglycaemia, prolonged inpatient stay, and higher systemic and surgical complications. The author provides a detailed description of pre- and postoperative management of insulin- and noninsulin-dependent diabetic patients.
Diabetic ketoacidosis (DKA) is a life-threatening state of relative or absolute insulin deficiency, aggravated by ensuing hyperglycaemia, dehydration and deranged metabolism, causing ketoacidosis. Readers are reminded of the diagnostic criteria, and advised of the primary and most critical initial treatments – fluids and intravenous insulin. Top tips for DKA prescribing, based on the latest Joint British Diabetes Society guidelines, are also provided.