We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $X$, $Y$ be nonsingular real algebraic sets. A map $\varphi \colon X \to Y$ is said to be $k$-regulous, where $k$ is a nonnegative integer, if it is of class $\mathcal {C}^k$ and the restriction of $\varphi$ to some Zariski open dense subset of $X$ is a regular map. Assuming that $Y$ is uniformly rational, and $k \geq 1$, we prove that a $\mathcal {C}^{\infty }$ map $f \colon X \to Y$ can be approximated by $k$-regulous maps in the $\mathcal {C}^k$ topology if and only if $f$ is homotopic to a $k$-regulous map. The class of uniformly rational real algebraic varieties includes spheres, Grassmannians and rational nonsingular surfaces, and is stable under blowing up nonsingular centers. Furthermore, taking $Y=\mathbb {S}^p$ (the unit $p$-dimensional sphere), we obtain several new results on approximation of $\mathcal {C}^{\infty }$ maps from $X$ into $\mathbb {S}^p$ by $k$-regulous maps in the $\mathcal {C}^k$ topology, for $k \geq 0$.
We introduce basic topological concepts, which are used to define continuous mappings, and topological invariants. Next, we introduce a differential structure on manifolds, to extend calculus from Euclidean spaces to the more general setting of differentiable manifolds.
In this paper, we determine the homotopy types of the Morse complexes of certain collections of simplicial complexes by studying dominating vertices or strong collapses. We show that if K contains two leaves that share a common vertex, then its Morse complex is strongly collapsible and hence has the homotopy type of a point. We also show that the pure Morse complex of a tree is strongly collapsible, thereby recovering as a corollary a result of Ayala et al. (2008, Topology and Its Applications 155, 2084–2089). In addition, we prove that the Morse complex of a disjoint union
$K\sqcup L$
is the Morse complex of the join
$K*L$
. This result is used to compute the homotopy type of the Morse complex of some families of graphs, including Caterpillar graphs, as well as the automorphism group of a disjoint union for a large collection of disjoint complexes.
Let
$\Omega $
be a connected open set in the plane and
$\gamma : [0,1] \to \overline {\Omega }$
a path such that
$\gamma ((0,1)) \subset \Omega $
. We show that the path
$\gamma $
can be “pulled tight” to a unique shortest path which is homotopic to
$\gamma $
, via a homotopy h with endpoints fixed whose intermediate paths
$h_t$
, for
$t \in [0,1)$
, satisfy
$h_t((0,1)) \subset \Omega $
. We prove this result even in the case when there is no path of finite Euclidean length homotopic to
$\gamma $
under such a homotopy. For this purpose, we offer three other natural, equivalent notions of a “shortest” path. This work generalizes previous results for simply connected domains with simple closed curve boundaries.
The beginning graduate student in homotopy theory is confronted with a vast literature on spectra that is scattered across books, articles and decades. There is much folklore but very few easy entry points. This comprehensive introduction to stable homotopy theory changes that. It presents the foundations of the subject together in one place for the first time, from the motivating phenomena to the modern theory, at a level suitable for those with only a first course in algebraic topology. Starting from stable homotopy groups and (co)homology theories, the authors study the most important categories of spectra and the stable homotopy category, before moving on to computational aspects and more advanced topics such as monoidal structures, localisations and chromatic homotopy theory. The appendix containing essential facts on model categories, the numerous examples and the suggestions for further reading make this a friendly introduction to an often daunting subject.
We study the 't Hooft-Polyakov monopole solution of the nonabelian Georgi-Glashow model, a model with the gauge group SU(2)=SO(3) and scalar fields in the 3 representation. After setting up the model, and finding the vacuum manifold, we solve for the monopole through an ansatz. We then study the topology of the solution through an analysis of homotopy groups. We derive a Bogomolnyi bound, and a BPS limit (for the scalar quartic coupling to vanish), in which we get linear BPS equations, which are solved exactly. The topology of the BPS monopole is compared with the topology of the Dirac monopole, and an embedding relation of the latter in the former is found.
This paper concerns extension of maps using obstruction theory under a non-classical viewpoint. It is given a classification of homotopy classes of maps and as an application it is presented a simple proof of a theorem by Adachi about equivalence of vector bundles. Also it is proved that, under certain conditions, two embeddings are homotopic up to surgery if and only if the respective normal bundles are SO-equivalent.
In this paper, the G2 interpolation by Pythagorean-hodograph (PH) quintic curves in ℝd, d ≥ 2, is considered. The obtained results turn out as a useful tool in practical applications. Independently of the dimension d, they supply a G2 quintic PH spline that locally interpolates two points, two tangent directions and two curvature vectors at these points. The interpolation problem considered is reduced to a system of two polynomial equations involving only tangent lengths of the interpolating curve as unknowns. Although several solutions might exist, the way to obtain the most promising one is suggested based on a thorough asymptotic analysis of the smooth data case. The numerical algorithm traces this solution from a particular set of data to the general case by a homotopy continuation method. Numerical examples confirm the efficiency of the proposed method.
A theorem due to Ohkawa states that the collection of Bousfield equivalence classes of spectra is a set. We extend this result to arbitrary combinatorial model categories.
In this paper, we characterize quadratic number fields possessing unique factorization in terms of the power cancellation property of torsion-free rank-two abelian groups, in terms of Σ-unique decomposition, in terms of a pair of point set topological properties of Eilenberg–Mac Lane spaces, and in terms of the sequence of rational primes. We give a complete set of topological invariants of abelian groups, we characterize those abelian groups that have the power cancellation property in the category of abelian groups, and we characterize those abelian groups that have Σ-unique decomposition. Our methods can be used to characterize any direct sum decomposition property of an abelian group.
The positive cohomology groups of a finite group acting on a ring vanish when the ring has a norm one element. In this note we give explicit homotopies on the level of cochains when the group is cyclic, which allows us to express any cocycle of a cyclic group as the coboundary of an explicit cochain. The formulas in this note are closely related to the effective problems considered in previous joint work with Eli Aljadeff.
Using ideas of S. Wassermann on non-exact ${{C}^{*}}$-algebras and property $\text{T}$ groups, we show that one of his examples of non-invertible ${{C}^{*}}$-extensions is not semi-invertible. To prove this, we show that a certain element vanishes in the asymptotic tensor product. We also show that a modification of the example gives a ${{C}^{*}}$-extension which is not even invertible up to homotopy.
For $K$ a connected finite complex and $G$ a compact connected Lie
group, a finiteness result is proved for gauge groups ${\mathcal G}(P)$
of principal $G$-bundles $P$ over $K$: as $P$ ranges over all
principal $G$-bundles with base $K$, the number of homotopy types
of ${\mathcal G}(P)$ is finite; indeed this remains true when
these gauge groups are classified by $H$-equivalence,
that is, homotopy equivalences which respect multiplication
up to homotopy.
A case study is given for $K = S^4$, $G = \text{SU}(2)$:
there are eighteen $H$-equivalence classes of gauge group
in this case. These questions are studied via fibre homotopy
theory of bundles of groups; the calculations in the case
study involve $K$-theories and $e$-invariants. 1991 Mathematics Subject Classification: 54C35, 55P15, 55R10.
The purpose of this paper is to introduce the notion of a CW complex over a topological category. The main theorem of this paper gives an equivalence between the homotopy theory of diagrams of spaces based on a topological category and the homotopy theory of CW complexes over the same base category.
A brief description of the paper goes as follows: in Section 1 we introduce the homotopy category of diagrams of spaces based on a fixed topological category. In Section 2 homotopy groups for diagrams are defined. These are used to define the concept of weak equivalence and J-n equivalence that generalize the classical definition. In Section 3 we adapt the classical theory of CW complexes to develop a cellular theory for diagrams. In Section 4 we use sheaf theory to define a reasonable cohomology theory of diagrams and compare it to previously defined theories. In Section 5 we define a closed model category structure for the homotopy theory of diagrams. We show this Quillen type homotopy theory is equivalent to the homotopy theory of J-CW complexes. In Section 6 we apply our constructions and results to prove a useful result in equivariant homotopy theory originally proved by Elmendorf by a different method.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.