The size order problem of the probability state vector elements of a homogeneous Markov system is examined. The time t0 is evaluated, after which the order of the state vector probabilities remains unchanged, and a formula to quickly find a lower bound for t0 is given. A formula for approximating the mode of the state sizes ni(t) as a function of the means Eni(t), and a relation to evaluate P(ni(t) = x+1) by means of certain terms which constitute P(ni(t) = x) are derived.