We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study Toeplitz operators on the space of all real analytic functions on the real line and the space of all holomorphic functions on finitely connected domains in the complex plane. In both cases, we show that the space of all Toeplitz operators is isomorphic, when equipped with the topology of uniform convergence on bounded sets, with the symbol algebra. This is surprising in view of our previous results, since we showed that the symbol map is not continuous in this topology on the algebra generated by all Toeplitz operators. We also show that in the case of the Fréchet space of all holomorphic functions on a finitely connected domain in the complex plane, the commutator ideal is dense in the algebra generated by all Toeplitz operators in the topology of uniform convergence on bounded sets.
The set of monomial convergence of the bounded holomophic functions on B_{c0} and of m-homogeneous polynomials on c0 was studied in Chapter 10. Here the space c0 is replaced by some other l_p spaces, or even by polynomials on an arbitrary Banach sequence space and holomorphic functions on Reinhardt domains. The only complete case is p=1, where the set of monomial convergence of the m-homogeneous polynomials is exactly l_1, and the set of monomial convergence of the bounded holomorphic functions on the open unit ball of l_1 is again the ball. For other p’s upper and lower bounds are presented that give a pretty tight description.
Given a family of formal power series, its set of monomial convergence is defined as those z’s for which the series converges. The main focus is given to the sets of monomial convergence of the m-homogeneous polynomials on c0 and of the bounded holomorphic functions on B_{c0}. The first one is completely described in terms of the Marcinkiewicz space l_{(2m)/(m-1), ∞}. For the second one there is no complete description. If z is such that limsup (log n)^(1/2) ∑_j^n (z*_j)^{2} < 1 (where z* is the decreasing rearrangement of z), then z is in the set of monomial convergence of the bounded holomorphic functions. Also, if z belongs to the set of monomial convergence, then the limit superior is ≤ 1. This is related to Bohr’s problem (see Chapter 1). First of all, if M denotes the supremum over all q so that l_q is contained in the set of monomial convergence of the bounded holomorphic functions on Bc0, then S=1/M. But this can be more precise: S is the infimum over all σ >0 so that the sequence (p_n^(-σ))_n (being p_n the n-th prime number) belongs to the set of monomial convergence of the bounded holomorphic functions on Bc0.
This is a short introduction to the theory of holomorphic functions in finitely and infinitely many variables. We begin with functions in finitely many variables, giving the definition of holomorphic function. Every such function has a monomial series expansion, where the coefficients are given by a Cauchy integral formula. Then we move to infinitely many variables, considering functions defined on B_{c0}, the open unit ball of the space of null sequences. Holomorphic functions are defined by means of Fréchet differentiability. We have versions of Weierstrass and Montel theorems in this setting. Every holomorphic function on B_{c0} defines a family of coefficients through a Cauchy integral formula and a (formal) monomial series expansion. Every bounded analytic (represented by a convergent power series) function is holomorphic. Hilbert’s criterion, that gives conditions on a family of scalars so that it is attached to a bounded holomorphic function on B_{c0}. Homogeneous polynomials are those entire functions having non-zero coefficients only for multi-indices of a given order. We show how these are related to multilinear forms on c0 through the polarization formulas.
We study the relationship between Hardy spaces of functions on the polytorus and certain spaces of holomorphic functions. We deal first with functions in finitely many variables, and later we jump to the infinite dimensional setting. For each N we consider the space of holomorphic functions g on the N-dimensional polydisc for which the L_p norms of g(rz) for 0<r<1 are bounded (known as the Hardy space of holomorphic functions). For each p these two Hardy spaces (of integrable functions on the N-dimensional polytorus and the N-dimensional polydisc) are isometrically isomorphic. The main tool in the proof is the Poisson operator (defined in Chapter 5). For the infinite dimensional case, we define the space of holomorphic functions g on l_2 ∩ Bc0 whose restrictions to the first N variables all belong to the corresponding Hardy space, and the norms are uniformly bounded (in N). These Hardy spaces of holomorphic functions on l_2 ∩ Bc0 and the Hardy spaces of integrable functions on the infinite-dimensional polytorus are isometrically isomorphic. The jump is given using a Hilbert criterion for Hardy spaces.
We establish a bijection between Dirichlet series and formal power series through Bohr’s transform. This is one of the main tools all along the text and relies on the fact that by the fundamental theorem of arithmetic every natural number has a unique decomposition as a product of prime numbers. In this way, to each such number a multi-index can be assigned (and vice-versa). With this we show that the space of bounded holomorphic functions on B_{c0} and \mathcal{H}_\infty are isomorphic as Banach spaces. This means that to every holomorphic function corresponds a Dirichlet series in such a way that the monomial and the Dirichlet coefficients are identified. We consider m-homogenous Dirichlet series: those having non-zero coefficients only if n has exactly m prime divisors (counted with multiplicity) and show that the space of such Dirichlet series is isometrically isomorphic to the space of m-homogeneous polynomials on c0.
Given a Banach space X, we consider Hardy spaces of X-valued functions on the infinite polytorus, Hardy spaces of X-valued Dirichlet series (defined as the image of the previous ones by the Bohr transform), and Hardy spaces of X-valued holomorphic functions on l_2 ∩ B_{c0}. The chapter is dedicated to study the interplay between these spaces. It is shown that the space of functions on the polytorus always forms a subspace of the one of holomorphic functions, and these two are isometrically isomorphic if and only if X has ARNP. Then the question arises of what do we find in the side of Dirichlet series when we look at the image of the Hardy space of holomorphic functions. This is also answered, showing that this consists of Dirichlet series for which all horizontal translations (those whose coefficients are (a_n/n^ε)) are in \mathcal{H}_p with uniformly bounded norms. Also, a version of the brothers Riesz theorem for vector-valued functions is given.
Over 100 years ago Harald Bohr identified a deep problem about the convergence of Dirichlet series, and introduced an ingenious idea relating Dirichlet series and holomorphic functions in high dimensions. Elaborating on this work, almost twnety years later Bohnenblust and Hille solved the problem posed by Bohr. In recent years there has been a substantial revival of interest in the research area opened up by these early contributions. This involves the intertwining of the classical work with modern functional analysis, harmonic analysis, infinite dimensional holomorphy and probability theory as well as analytic number theory. New challenging research problems have crystallized and been solved in recent decades. The goal of this book is to describe in detail some of the key elements of this new research area to a wide audience. The approach is based on three pillars: Dirichlet series, infinite dimensional holomorphy and harmonic analysis.
is bounded on the Hardy spaces of the upper half-plane ${\rm {\cal H}}_a^p ({\open C}_ + )$, $p\in [1,\infty ]$. The corresponding operator norms and their applications are also given.
In the study of the spectra of algebras of holomorphic functions on a Banach space E, the bidual E″ has a central role, and the spectrum is often shown to be locally homeomorphic to E″. In this paper we consider the problem of spectra of subalgebras invariant under the action of a group (functions f such that f ○ g = f). It is natural to attempt a characterization in terms of the space of orbits E″/~ obtained from E″ through the action of the group, so we pursue this approach here and introduce an analytic structure on the spectrum in some situations. In other situations we encounter some obstacles: in some cases, the lack of structure of E″/~ itself; in others, problems of weak continuity and non-approximability of functions in the algebra. We also define a convolution operation related to the spectrum.
For holomorphic functions $f$ in the unit disk $ \mathbb{D} $ with $f(0)= 0$, we prove a modulus growth bound involving the logarithmic capacity (transfinite diameter) of the image. We show that the pertinent extremal functions map the unit disk conformally onto the interior of an ellipse. We prove a modulus growth bound for elliptically schlicht functions in terms of the elliptic capacity ${\mathrm{d} }_{\mathrm{e} } f( \mathbb{D} )$ of the image. We also show that the function ${\mathrm{d} }_{\mathrm{e} } f(r \mathbb{D} )/ r$ is increasing for $0\lt r\lt 1$.
This paper studies the concept of strongly omnipresent operators that was recently introduced by the first two authors. An operator T on the space H(G) of holomorphic functions on a complex domain G is called strongly omnipresent whenever the set of T-monsters is residual in H(G), and a T-monster is a function f such that Tf exhibits an extremely ‘wild’ behaviour near the boundary. We obtain sufficient conditions under which an operator is strongly omnipresent, in particular, we show that every onto linear operator is strongly omnipresent. Using these criteria we completely characterize strongly omnipresent composition and multiplication operators.
Let M be a projective manifold, p: MG→M a regular covering over M with a free Abelian transformation group G. We describe the holomorphic functions on MG of an exponential growth with respect to the distance defined by a metric pulled back from M. As a corollary, we obtain Cartwright and Liouville-type theorems for such functions. Our approach brings together the L2 cohomology technique for holomorphic vector bundles on complete Kähler manifolds and the geometric properties of projective manifolds.
Around 1995, Professors Lupacciolu, Chirka and Stout showed that a closed subset of ${{\mathbb{C}}^{N}}\left( N\ge 2 \right)$ is removable for holomorphic functions, if its topological dimension is less than or equal to $N\,-\,2$. Besides, they asked whether closed subsets of ${{\mathbb{C}}^{2}}$ homeomorphic to the real line (the simplest 1-dimensional sets) are removable for holomorphic functions. In this paper we propose a positive answer to that question.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.