We analyze the automorphism group for the norm closed quiver algebras 𝒯+(Q). We begin by focusing on two normal subgroups of the automorphism group which are characterized by their actions on the maximal ideal space of 𝒯+(Q). To further discuss arbitrary automorphisms we factor automorphism through subalgebras for which the automorphism group can be better understood. This allows us to classify a large number of noninner automorphisms. We suggest a candidate for the group of inner automorphisms.