We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A subset ${\mathcal D}$ of a domain $\Omega \subset {\mathbb C}^d$ is determining for an analytic function $f:\Omega \to \overline {{\mathbb D}}$ if whenever an analytic function $g:\Omega \rightarrow \overline {{\mathbb D}}$ coincides with f on ${\mathcal D}$, equals to f on whole $\Omega $. This note finds several sufficient conditions for a subset of the symmetrized bidisk to be determining. For any $N\geq 1$, a set consisting of $N^2-N+1$ many points is constructed which is determining for any rational inner function with a degree constraint. We also investigate when the intersection of the symmetrized bidisk intersected with some special algebraic varieties can be determining for rational inner functions.
In this paper, we establish gradient continuity for solutions to
\[ (\partial_t - \operatorname{div}(A(x) \nabla ))^{s} u =f,\quad s \in (1/2, 1), \]
when $f$ belongs to the scaling critical function space $L\left (\frac {n+2}{2s-1}, 1\right )$. Our main results theorems 1.1 and 1.2 can be seen as a nonlocal generalization of a well-known result of Stein in the context of fractional heat type operators and sharpen some of the previous gradient continuity results which deal with $f$ in subcritical spaces. Our proof is based on an appropriate adaptation of compactness arguments, which has its roots in a fundamental work of Caffarelli in [13].
In this paper we study Lp−Lr estimates of both the extension operator and the averaging operator associated with the algebraic variety S = {x ∈ : Q(x) = 0}, where Q(x) is a non-degenerate quadratic form over the finite field with q elements. We show that the Fourier decay estimate on S is good enough to establish the sharp averaging estimates in odd dimensions. In addition, the Fourier decay estimate enables us to simply extend the sharp L2−L4 conical extension result in , due to Mockenhaupt and Tao, to the L2−L2(d+1)/(d−1) estimate in all odd dimensions d ≥ 3. We also establish a sharp estimate of the mapping properties of the average operators in the case when the variety S in even dimensions d ≥ 4 contains a d/2-dimensional subspace.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.