We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We present a complex analytic proof of the Pila–Wilkie theorem for subanalytic sets. In particular, we replace the use of $C^{r}$-smooth parametrizations by a variant of Weierstrass division. As a consequence we are able to apply the Bombieri–Pila determinant method directly to analytic families without limiting the order of smoothness by a $C^{r}$ parametrization. This technique provides the key inductive step for our recent proof (in a closely related preprint) of the Wilkie conjecture for sets definable using restricted elementary functions. As an illustration of our approach we prove that the rational points of height $H$ in a compact piece of a complex-analytic set of dimension $k$ in $\mathbb{C}^{m}$ are contained in $O(1)$ complex-algebraic hypersurfaces of degree $(\log H)^{k/(m-k)}$. This is a complex-analytic analog of a recent result of Cluckers, Pila, and Wilkie for real subanalytic sets.
We prove that for p-optimal fields (a very large subclass of p-minimal fields containing all the known examples) a cell decomposition theorem follows from methods going back to Denef’s paper [7]. We derive from it the existence of definable Skolem functions and strong p-minimality. Then we turn to strongly p-minimal fields satisfying the Extreme Value Property—a property which in particular holds in fields which are elementarily equivalent to a p-adic one. For such fields K, we prove that every definable subset of K × Kd whose fibers over K are inverse images by the valuation of subsets of the value group is semialgebraic. Combining the two we get a preparation theorem for definable functions on p-optimal fields satisfying the Extreme Value Property, from which it follows that infinite sets definable over such fields are in definable bijection iff they have the same dimension.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.