We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 1 introduces the first information measure – Shannon entropy. After studying its standard properties (chain rule, conditioning), we will briefly describe how one could arrive at its definition. We discuss axiomatic characterization, the historical development in statistical mechanics, as well as the underlying combinatorial foundation (“method of types”). We close the chapter with Han’s and Shearer’s inequalities, which both exploit the submodularity of entropy.
Any deterministic process loses information, and one can quantify the amount of information lost. Information loss is a generalization of entropy, and in some ways is a better-behaved quantity, being more functorial. We give a simple axiomatic characterization of information loss.
We give a short introduction to some classical information-theoretic quantities: joint entropy, conditional entropy and mutual information. We then interpret their exponentials ecologically, as meaningful measures of subcommunities of a larger metacommunity. These subcommunity and metacommunity measures have excellent logical properties, as we establish. We also show how all these quantities can be presented in terms of relative entropy and the value measures of the previous chapter.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.