We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Carbon monoxide (CO) toxicity is a significant health problem. The use of non-invasive pulse CO-oximetry screening in the emergency department has demonstrated that the rapid screening of numerous individuals for CO toxicity is simple and capable of identifying occult cases of CO toxicity.
Objective:
The objective of this study was to extend the use of this handheld device to the prehospital arena, assess carboxyhemoglobin (SpCO) levels in emergency medical services (EMS) patients, and correlate these levels with clinical and demographic data.
Methods:
This was a retrospective, observational, chart review of adult patients transported to hospital emergency departments by urban fire department EMS ambulances during a six-week period. Each ambulance used a non-invasive pulse CO-oximeter (Rad-57, Masimo Inc.) to record patients' COHb concentrations (SpCO) along with the standard EMS assessment data. Spearman's Rank Correlation tests and Student's t-tests were used to analyze the data and calculate relationships between SpCO and other variables (age, gender, respiratory rate, heart rate, mean arterial pressure, and oxygen saturation measured by pulse oximetry).
Results:
A total of 36.4% of the patients transported during the study had SpCO documented. Of the 1,017 adults included in this group, 11 (1.1%) had an SpCO >15%. There was no correlation between SpCO and heart rate, ventilatory rate, mean arterial pressure, and oxygen saturation.
Conclusions:
Screening for CO toxicity in the EMS setting is possible, and may aid in the early detection and treatment of CO-poisoned patients.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.