We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Over the past decade, Emergency Medical Service (EMS) systems decreased backboard use as they transition from spinal immobilization (SI) protocols to spinal motion restriction (SMR) protocols. Since this change, no study has examined its effect on the neurologic outcomes of patients with spine injuries.
Objectives:
The object of this study is to determine if a state-wide protocol change from an SI to an SMR protocol had an effect on the incidence of disabling spinal cord injuries.
Methods:
This was a retrospective review of patients in a single Level I trauma center before and after a change in spinal injury protocols. A two-step review of the record was used to classify spinal cord injuries as disabling or not disabling. A binary logistic regression was used to determine the effects of protocol, gender, age, level of injury, and mechanism of injury (MOI) on the incidence of significant disability from a spinal cord injury.
Results:
A total of 549 patients in the SI period and 623 patients in the SMR period were included in the analysis. In the logistic regression, the change from an SI protocol to an SMR protocol did not demonstrate a significant effect on the incidence of disabling spinal injuries (OR: 0.78; 95% CI, 0.44 - 1.36).
Conclusion:
This study did not demonstrate an increase in disabling spinal cord injuries after a shift from an SI protocol to an SMR protocol. This finding, in addition to existing literature, supports the introduction of SMR protocols and the decreased use of the backboard.
High-quality chest compressions (CCs) are associated with high survival rates and good neurological outcomes in cardiac arrest patients. The 2015 American Heart Association (AHA; Dallas, Texas USA) Guidelines for Resuscitation defined and recommended high-quality CCs during cardiopulmonary resuscitation (CPR). However, CPR providers struggle to achieve high-quality CCs. There is a debate about the use of backboards during CPR in literature. Some studies suggest backboards improve CC quality, whereas others suggest that backboards can cause delays. This is the first study to evaluate all three components of high-quality CCs: compression depth, recoil depth, and rate, at the same time with a high number of subjects. This study evaluated the impact of backboards on CC quality during CPR. The primary outcome was the difference in successful CC rates between two groups.
Methods:
This was a randomized, controlled, single-blinded study using a high-fidelity mannequin. The successful CC rates, means CC depths, recoil depths, and rates achieved by 6th-grade undergraduate medical students during two minutes of CPR were compared between two randomized groups: an experimental group (backboard present) and a control group (no backboard).
Results:
Fifty-one of all 101 subjects (50.5%) were female, and the mean age was 23.9 (SD = 1.01) years. The number and the proportion of successful CCs were significantly higher in the experimental group (34; 66.7%) when compared to the control group (19; 38.0%; P = .0041). The difference in mean values of CC depth, recoil depth, and CC rate was significantly higher in the experiment group.
Conclusion:
The results suggest that using a backboard during CPR improves the quality of CCs in accordance with the 2015 AHA Guidelines.
Sanri E, Karacabey S. The impact of backboard placement on chest compression quality: a mannequin study. Prehosp Disaster Med. 2019;34(2):182–187
Traction splinting has been the prehospital treatment of midshaft femur fracture as early as the battlefield of the First World War (1914-1918). This study is the assessment of these injuries and the utilization of a traction splint (TS) in blunt and penetrating trauma, as well as intravenous (IV) analgesia utilization by Emergency Medical Services (EMS) in Miami, Florida (USA).
Methods
This is a retrospective study of patients who sustained a midshaft femur fracture in the absence of multiple other severe injuries or severe physiologic derangement, as defined by an injury severity score (ISS) <20 and a triage revised trauma score (T-RTS)≥10, who presented to an urban, Level 1 trauma center between September 2008 and September 2013. The EMS patient care reports were assessed for physical exam findings and treatment modality. Data were analyzed descriptively and statistical differences were assessed using odds ratios and Z-score with significance set at P≤.05.
Results
There were 170 patients studied in the cohort. The most common physical exam finding was a deformity +/- shortening and rotation in 136 patients (80.0%), followed by gunshot wound (GSW) in 22 patients (13.0%), pain or tenderness in four patients (2.4%), and no findings consistent with femur fracture in three patients (1.7%). The population was dichotomized between trauma type: blunt versus penetrating. Of 134 blunt trauma patients, 50 (37.0%) were immobilized in traction, and of the 36 penetrating trauma victims, one (2.7%) was immobilized in traction. Statistically significant differences were found in the application of a TS in blunt trauma when compared to penetrating trauma (OR=20.83; 95% CI, 2.77-156.8; P <.001). Intravenous analgesia was administered to treat pain in only 35 (22.0%) of the patients who had obtainable IV access. Of these patients, victims of blunt trauma were more likely to receive IV analgesia (OR=6.23; 95% CI, 1.42-27.41; P=.0067).
Conclusion
Although signs of femur fracture are recognized in the majority of cases of midshaft femur fracture, only 30% of patients were immobilized using a TS. Statistically significant differences were found in the utilization of a TS and IV analgesia administration in the setting of blunt trauma when compared to penetrating trauma.
NackensonJ, BaezAA, MeizosoJP. A Descriptive Analysis of Traction Splint Utilization and IV Analgesia by Emergency Medical Services.Prehosp Disaster Med. 2017;32(6):631–635.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.