We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Diagrammatic reducibility DR and its generalization, vertex asphericity VA, are combinatorial tools developed for detecting asphericity of a 2-complex. Here we present tests for a relative version of VA that apply to pairs of 2-complexes
$(L,K)$
, where K is a subcomplex of L. We show that a relative weight test holds for injective labeled oriented trees, implying that they are VA and hence aspherical. This strengthens a result obtained by the authors in 2017 and simplifies the original proof.
We present a new test for studying asphericity and diagrammatic reducibility of group presentations. Our test can be applied to prove diagrammatic reducibility in cases where the classical weight test fails. We use this criterion to generalize results of J. Howie and S.M. Gersten on asphericity of LOTs and of Adian presentations, and derive new results on solvability of equations over groups. We also use our methods to investigate a conjecture of S.V. Ivanov related to Kaplansky's problem on zero divisors: we strengthen Ivanov's result for locally indicable groups and prove a weak version of the conjecture.
Excluding four exceptional cases, we determine the asphericity of the relative presentation for m ⩾ 2. If H = ⟨g, h⟩ ⩽ G, then the exceptional cases occur when H is isomorphic to C5 or C6.
The question of whether ribbon-disc complements—or, equivalently, standard 2-complexes over labelled oriented trees—are aspherical is of great importance for Whitehead’s asphericity conjecture and, if solved affirmatively, would imply a combinatorial proof of the asphericity of knot complements. We present here two classes of diagrammatically reducible labelled oriented trees.
An interesting result of Ivanov implies that a non-aspherical relative presentation that defines a torsion-free group would provide a potential counterexample to the Kaplansky zero-divisor conjecture. In this point of view, we prove the asphericity of the length-6 relative presentation $\langle H,x: xh_1xh_2xh_3xh_4xh_5xh_6\rangle$, provided that each coefficient is torsion free.
Two examples of topological embeddings of S2 in S4 are constructed. The first has the unusual property that the fundamental group of the complement is isomorphic to the integers while the second homotopy group of the complement is nontrivial. The second example is a non-locally flat embedding whose complement exhibits this property locally.
Two theorems are proved. The first answers the question of just when good π1 implies the vanishing of the higher homotopy groups for knot complements in S4. The second theorem characterizes local flatness for 2-spheres in S4 in terms of a local π1 condition.
We extend earlier work relating asphericity and Euler characteristics for finite complexes whose fundamental groups have nontrivial torsion free abelian normal subgroups. In particular a finitely presentable group which has a nontrivial elementary amenable subgroup whose finite subgroups have bounded order and with no nontrivial finite normal subgroup must have deficiency at most 1, and if it has a presentation of deficiency 1 then the corresponding 2-complex is aspherical. Similarly if the fundamental group of a closed 4-manifold with Euler characteristic 0 is virtually torsion free and elementary amenable then it either has 2 ends or is virtually an extension of Z by a subgroup of Q, or the manifold is asphencal and the group is virtually poly- Z of Hirsch length 4.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.