We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This concluding chapter recaps what has been learnt in the previous chapters about the Standard Model. This model is highly successful in describing particle physics phenomena. Some of its successes are briefly underlined, such as the number of light neutrino families. However, as with any model, it also has its weaknesses, which are also provided. The most important open questions of particle physics are addressed in the second part of the chapter, in particular, the matter–antimatter asymmetry, the hypothetical presence of the dark matter. Possible extensions of the Standard Model are presented to incorporate massive neutrinos.
The DNP phenomenoma are first overviewed basing on magnetic spin transitions and on thermal reservoirs, before turning to the microscopic and quantum statistical descriptions using the high-temperature approximation. The dynamic cooling of dipolar interactions is then extended to low temperatures and the stationary solution of Borghini is developed. The physical limits of the equal spin temperature model are discussed, focusing on the electron spin concentration, cross relaxation and hyperfine interactions, before treating the limitations arising from the heat transport, diffusion barrier, leakage factor and phonon bottleneck. The resolved and differential solid effect mechanisms are then presented before turning to the cross effect, Overhauser effect and DNP of hyperfine nuclei. The microwave frequency modulation effects are discussed in view of the “hole burning” due to limited cross relaxation and due to uneven power absorption cause by the magnetic dispersion and by inhomogeneity of the magnetic field.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.