Interferometric methods have been used at a number of observatories to improve the spatial resolution of large optical telescopes, approaching and in some cases reaching the diffraction limit. The principal methods used have been speckle interferometry and non-redundant masking (NRM). The MAPPIT (Masked APerture Plane Interference Telescope) instrument has been used for NRM observations at the 3·9 m Anglo-Australian Telescope. This paper describes a proposed instrument, MAPPIT 2, which would use a Shack-Hartmann wavefront sensor in parallel with an interferometer performing NRM or one-dimensional speckle interferometry. The inclusion of the data from the wavefront sensor will enhance the sensitivity of the instrument, especially for the imaging of relatively complex objects (those giving more than a few resolution elements with non-zero intensities). Limiting the instantaneous spatial resolution to one dimension allows available CCD detectors to operate with 100% duty cycle. Observations at a number of position angles allow two-dimensional images to be obtained.