We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter outlines a programme of research that examined olfactory neuroepithelium in schizophrenia as an example of the heuristic value of this research. The neurodevelopmental hypothesis of schizophrenia proposes that genetic and epigenetic factors alter early brain development, leaving the affected individual at increased risk of developing schizophrenia. The favoured model for neurodevelopment is the adult olfactory epithelium, which provides access to developing neural tissue in living patients. The olfactory neuroepithelium is capable of regeneration and there is a continual renewal of the sensory neuron. Properties of olfactory neuroepithelium cultures of individuals with psychotic disorders may have heuristic value with respect to unravelling functions related to both early brain development and even with respect to current brain function, given the continuing neurogenesis now known to occur in adult brain. In schizophrenia, olfactory epithelium has also been exploited to reveal evidence in support of neurodevelopmental aetiology for this disorder.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.