We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The second eigenvalue of the Robin Laplacian is shown to be maximal for the disk among simply-connected planar domains of fixed area when the Robin parameter is scaled by perimeter in the form $\unicode[STIX]{x1D6FC}/L(\unicode[STIX]{x1D6FA})$, and $\unicode[STIX]{x1D6FC}$ lies between $-2\unicode[STIX]{x1D70B}$ and $2\unicode[STIX]{x1D70B}$. Corollaries include Szegő’s sharp upper bound on the second eigenvalue of the Neumann Laplacian under area normalization, and Weinstock’s inequality for the first nonzero Steklov eigenvalue for simply-connected domains of given perimeter.
The first Robin eigenvalue is maximal, under the same conditions, for the degenerate rectangle. When area normalization on the domain is changed to conformal mapping normalization and the Robin parameter is positive, the maximiser of the first eigenvalue changes back to the disk.
In this paper, a nonconforming mixed finite element method (FEM) is presented to approximate time-dependent Maxwell's equations in a three-dimensional bounded domain with absorbing boundary conditions (ABC). By employing traditional variational formula, instead of adding penalty terms, we show that the discrete scheme is robust. Meanwhile, with the help of the element's typical properties and derivative transfer skills, the convergence analysis and error estimates for semidiscrete and backward Euler fully-discrete schemes are given, respectively. Numerical tests show the validity of the proposed method.
We propose a new Absorbing Boundary Condition (ABC) for the acoustic wave equation which is derived from a micro-local diagonalization process formerly defined by M.E. Taylor and which does not depend on the geometry of the surface bearing the ABC. By considering the principal symbol of the wave equation both in the hyperbolic and the elliptic regions, we show that a second-order ABC can be constructed as the combination of an existing first-order ABC and a Fourier-Robin condition. We compare the new ABC with other ABCs and we show that it performs well in simple configurations and that it improves the accuracy of the numerical solution without increasing the computational burden.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.