We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In their logical analysis of theorems about disjoint rays in graphs, Barnes, Shore, and the author (hereafter BGS) introduced a weak choice scheme in second-order arithmetic, called the $\Sigma ^1_1$ axiom of finite choice (hereafter finite choice). This is a special case of the $\Sigma ^1_1$ axiom of choice ($\Sigma ^1_1\text {-}\mathsf {AC}_0$) introduced by Kreisel. BGS showed that $\Sigma ^1_1\text {-}\mathsf {AC}_0$ suffices for proving many of the aforementioned theorems in graph theory. While it is not known if these implications reverse, BGS also showed that those theorems imply finite choice (in some cases, with additional induction assumptions). This motivated us to study the proof-theoretic strength of finite choice. Using a variant of Steel forcing with tagged trees, we show that finite choice is not provable from the $\Delta ^1_1$-comprehension scheme (even over $\omega $-models). We also show that finite choice is a consequence of the arithmetic Bolzano–Weierstrass theorem (introduced by Friedman and studied by Conidis), assuming $\Sigma ^1_1$-induction. Our results were used by BGS to show that several theorems in graph theory cannot be proved using $\Delta ^1_1$-comprehension. Our results also strengthen results of Conidis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.