We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let K be an infinite field of characteristic $p>0$ and let $\lambda, \mu$ be partitions, where $\mu$ has two parts. We find sufficient arithmetic conditions on $p, \lambda, \mu$ for the existence of a nonzero homomorphism $\Delta(\lambda) \to \Delta (\mu)$ of Weyl modules for the general linear group $GL_n(K)$. Also, for each p we find sufficient conditions so that the corresponding homomorphism spaces have dimension at least 2.
It is proved that each Hoeffding space associated with a random permutation(or, equivalently, with extractions without replacement from a finitepopulation) carries an irreducible representation of the symmetric group,equivalent to a two-block Specht module.
In this paper, we investigate the structure of Ariki–Koike algebras and their Specht modules using Gröbner–Shirshov basis theory and combinatorics of Young tableaux. For a multipartition $\lambda$, we find a presentation of the Specht module $S^{\lambda}$ given by generators and relations, and determine its Gröbner–Shirshov pair. As a consequence, we obtain a linear basis of $S^{\lambda}$ consisting of standard monomials with respect to the Gröbner–Shirshov pair. We show that this monomial basis can be canonically identified with the set of cozy tableaux of shape $\lambda$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.