We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Basic concepts of electromagnetic theory; Coulomb gauge; intensity of electromagnetic field. Electrons in an electromagnetic field: from the Lagrangian to the Hamiltonian; canonical momentum. Interaction Hamiltonian. Semiclassical approximation; weak-field limit. Electric dipole approximation. Calculation of the optical susceptibility by using the density matrix approach. From optical susceptibility to absorption coefficient. Momentum of an electron in a periodic crystal.
Starting from a detailed explanation of Klein paradox of relativistic quantum mechanics, we consider a motion of massless Dirac fermions through potential barriers. It is shown that chiral properties of these particles guarantee a penetration through arbitrarily high and broad potential barriers. The role of this phenomenon (chiral tunneling) for graphene physics and technology is explained. We discuss analogy between electronic optics of graphene and optical properties of metamaterials, especially, Veselago lensing effect for massless Dirac fermions. Chiral tunneling in bilayer graphene is discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.