We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we prove that, up to similarity, there are only two minimal hypersurfaces in $\mathbb{R}^{n+2}$ that are asymptotic to a Simons cone, i.e., the minimal cone over the minimal hypersurface $\sqrt{\frac{p}{n}}\mathbb{S}^{p}\times \sqrt{\frac{n-p}{n}}\mathbb{S}^{n-p}$ of $\mathbb{S}^{n+1}$.
Our purpose is to study the geometry of linear Weingarten spacelike hypersurfaces immersed in a locally symmetric Einstein spacetime, whose sectional curvature is supposed to obey some standard restrictions. In this setting, by using as main analytical tool a generalized maximum principle for complete non-compact Riemannian manifolds, we establish sufficient conditions to guarantee that such a hypersurface must be either totally umbilical or an isoparametric hypersurface with two distinct principal curvatures, one of which is simple. Applications to the de Sitter space are given.
We study hypersurfaces of constant mean curvature immersed into warped product spaces of the form $\mathbb{R}\times_\varrho\mathbb{P}^n$, where $\mathbb{P}^n$ is a complete Riemannian manifold. In particular, our study includes that of constant mean curvature hypersurfaces in product ambient spaces, which have recently been extensively studied. It also includes constant mean curvature hypersurfaces in the so-called pseudo-hyperbolic spaces. If the hypersurface is compact, we show that the immersion must be a leaf of the trivial totally umbilical foliation $t\in\mathbb{R}\mapsto\{t\}\times\mathbb{P}^n$, generalizing previous results by Montiel. We also extend a result of Guan and Spruck from hyperbolic ambient space to the general situation of warped products. This extension allows us to give a slightly more general version of a result by Montiel and to derive height estimates for compact constant mean curvature hypersurfaces with boundary in a leaf.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.