We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $X_1, \ldots, X_n$ be mutually independent exponential random variables with distinct hazard rates $\lambda _1, \ldots, \lambda _n$ and let $Y_1, \ldots, Y_n$ be a random sample from the exponential distribution with hazard rate $\bar \lambda = \sum _{i=1}^{n} \lambda _i/n$. Also let $X_{1:n} \lt \cdots \lt X_{n:n}$ and $Y_{1:n} \lt \cdots \lt Y_{n:n}$ be their associated order statistics. It is proved that for $1\le i \lt j \le n$, the generalized spacing $X_{j:n} - X_{i:n}$ is more dispersed than $Y_{j:n} - Y_{i:n}$ according to dispersive ordering and for $2\le i \le n$, the dependence of $X_{i:n}$ on $X_{1:n}$ is less than that of $Y_{i:n}$ on $Y_{1 :n}$, in the sense of the more stochastically increasing ordering. This dependence result is also extended to the proportional hazard rates (PHR) model. This extends the earlier work of Genest et al. [(2009)]. On the range of heterogeneous samples. Journal of Multivariate Analysis 100: 1587–1592] who proved this result for $i =n$.
In this paper, we study an optimal insurance problem in the presence of background risk from the perspective of an insured with higher-order risk attitudes. We introduce several useful dependence notions to model positive dependence structures between the insurable risk and background risk. Under these dependence structures, we compare insurance contracts of different forms in higher-order risk attitudes and establish the optimality of stop-loss insurance form. We also explicitly derive the optimal retention level. Finally, we carry out a comparative analysis and investigate how the change in the insured's initial wealth or background risk affects the optimal retention level.
We establish stability, monotonicity, concavity and subadditivity properties for open stochastic storage networks in which the driving process has stationary increments. A principal example is a stochastic fluid network in which the external inputs are random but all internal flows are deterministic. For the general model, the multi-dimensional content process is tight under the natural stability condition. The multi-dimensional content process is also stochastically increasing when the process starts at the origin, implying convergence to a proper limit under the natural stability condition. In addition, the content process is monotone in its initial conditions. Hence, when any content process with non-zero initial conditions hits the origin, it couples with the content process starting at the origin. However, in general, a tight content process need not hit the origin.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.