We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A method for robust canonical discriminant analysis via two robust objective loss functions is discussed. These functions are useful to reduce the influence of outliers in the data. Majorization is used at several stages of the minimization procedure to obtain a monotonically convergent algorithm. An advantage of the proposed method is that it allows for optimal scaling of the variables. In a simulation study it is shown that under the presence of outliers the robust functions outperform the ordinary least squares function, both when the underlying structure is linear in the variables as when it is nonlinear. Furthermore, the method is illustrated with empirical data.
Tukey's scheme for finding separations in univariate data strings is described and tested. It is found that one can use the size of a data gap coupled with its ordinal position in the distribution to determine the likelihood of its having arisen by chance. It was also shown that this scheme is relatively robust for fatter-tailed-than-Gaussian distributions and has some interesting implications in multidimensional situations.
A test is proposed for the equality of the variances of k ≥ 2 correlated variables. Pitman's test for k = 2 reduces the null hypothesis to zero correlation between their sum and their difference. Its extension, eliminating nuisance parameters by a bootstrap procedure, is valid for any correlation structure between the k normally distributed variables. A Monte Carlo study for several combinations of sample sizes and number of variables is presented, comparing the level and power of the new method with previously published tests. Some nonnormal data are included, for which the empirical level tends to be slightly higher than the nominal one. The results show that our method is close in power to the asymptotic tests which are extremely sensitive to nonnormality, yet it is robust and much more powerful than other robust tests.
Item response theory (IT) models are now in common use for the analysis of dichotomous item responses. This paper examines the sampling theory foundations for statistical inference in these models. The discussion includes: some history on the “stochastic subject” versus the random sampling interpretations of the probability in IRT models; the relationship between three versions of maximum likelihood estimation for IRT models; estimating θ versus estimating θ-predictors; IRT models and loglinear models; the identifiability of IRT models; and the role of robustness and Bayesian statistics from the sampling theory perspective.
In the framework of a robustness study on maximum likelihood estimation with LISREL three types of problems are dealt with: nonconvergence, improper solutions, and choice of starting values. The purpose of the paper is to illustrate why and to what extent these problems are of importance for users of LISREL. The ways in which these issues may affect the design and conclusions of robustness research is also discussed.
Taxicab correspondence analysis is based on the taxicab singular value decomposition of a contingency table, and it shares some similar properties with correspondence analysis. It is more robust than the ordinary correspondence analysis, because it gives uniform weights to all the points. The visual map constructed by taxicab correspondence analysis has a larger sweep and clearer perspective than the map obtained by correspondence analysis. Two examples are provided.
This paper addresses methodological issues that concern the scaling model used in the international comparison of student attainment in the Programme for International Student Attainment (PISA), specifically with reference to whether PISA’s ranking of countries is confounded by model misfit and differential item functioning (DIF). To determine this, we reanalyzed the publicly accessible data on reading skills from the 2006 PISA survey. We also examined whether the ranking of countries is robust in relation to the errors of the scaling model. This was done by studying invariance across subscales, and by comparing ranks based on the scaling model and ranks based on models where some of the flaws of PISA’s scaling model are taken into account. Our analyses provide strong evidence of misfit of the PISA scaling model and very strong evidence of DIF. These findings do not support the claims that the country rankings reported by PISA are robust.
We study the robustness of Krupka and Weber's method (2013) for eliciting social norms. In two online experiments with more than 1200 participants on Amazon Mechanical Turk, we find that participants’ response patterns are invariant to differences in the salience of the monetarily incentivized coordination aspect. We further demonstrate that asking participants for their personal first- and second-order beliefs without monetary incentives results in qualitatively identical responses in the case that beliefs and social norms are well aligned. Overall, Krupka and Weber's method produces remarkably robust response patterns.
Corrections for restriction in range due to explicit selection assume the linearity of regression and homoscedastic array variances. This paper develops a theoretical framework in which the effects of some common forms of violation of these assumptions on the estimation of the unrestricted correlation can be investigated. Simple expressions are derived for both the restricted and corrected correlations in terms of the target (unrestricted) correlation in these situations.
This paper discusses the issue of differential item functioning (DIF) in international surveys. DIF is likely to occur in international surveys. What is needed is a statistical approach that takes DIF into account, while at the same time allowing for meaningful comparisons between countries. Some existing approaches are discussed and an alternative is provided. The core of this alternative approach is to define the construct as a large set of items, and to report in terms of summary statistics. Since the data are incomplete, measurement models are used to complete the incomplete data. For that purpose, different models can be used across countries. The method is illustrated with PISA’s reading literacy data. The results indicate that this approach fits the data better than the current PISA methodology; however, the league tables are nearly identical. The implications for monitoring changes over time are discussed.
The importance of appropriate test selection for a given research endeavor cannot be overemphasized. Using samples drawn from eleven populations (differing in shape, peakedness, and density in the tails), this study investigates the small sample empirical powers of nine k-sample tests against ordered location alternatives under completely randomized designs. The results then are intended to aid the researcher in the selection of a particular procedure appropriate for a given endeavor. To highlight this an industrial psychology application involving work productivity is presented.
When some of observed variates do not conform to the model under consideration, they will have a serious effect on the results of statistical analysis. In factor analysis the model with inconsistent variates may result in improper solutions. In this article a useful method for identifying a variate as inconsistent is proposed in factor analysis. The procedure is based on the likelihood principle. Several statistical properties such as the effect of misspecified hypotheses, the problem of multiple comparisons, and robustness to violation of distributional assumptions are investigated. The procedure is illustrated by some examples.
A recent paper by Wainer and Thissen has renewed the interest in Gini’s mean difference, G, by pointing out its robust characteristics. This note presents distribution-free asymptotic confidence intervals for its population value, γ, in the one sample case and for the difference Δ = (γ1 − γ2) in the two sample situations. Both procedures are based on a technique of jackknifing U-statistics developed by Arvesen.
This Element examines how climate scientists have arrived at answers to three key questions about climate change: How much is earth's climate warming? What is causing this warming? What will climate be like in the future? Resources from philosophy of science are employed to analyse the methods that climate scientists use to address these questions and the inferences that they make from the evidence collected. Along the way, the analysis contributes to broader philosophical discussions of data modelling and measurement, robustness analysis, explanation, and model evaluation.
Noise is a ubiquitous feature for all organisms growing in nature. Noise (defined here as stochastic variation) in the availability of nutrients, water and light profoundly impacts their growth and development. Not only is noise present as an external factor but cellular processes themselves are noisy. Therefore, it is remarkable that organisms can display robust control of growth and development despite noise. To survive, various mechanisms to suppress noise have evolved. However, it is also becoming apparent that noise is not just a nuisance that organisms must suppress but can be beneficial as low noise can facilitate the response of an organism to a sub-threshold input signal in a stochastic resonance mechanism. This review discusses mechanisms capable of noise suppression or noise leveraging that might play a significant role in robust temporal regulation of an organism’s response to their noisy environment.
Text classification methods have been widely investigated as a way to detect content of low credibility: fake news, social media bots, propaganda, etc. Quite accurate models (likely based on deep neural networks) help in moderating public electronic platforms and often cause content creators to face rejection of their submissions or removal of already published texts. Having the incentive to evade further detection, content creators try to come up with a slightly modified version of the text (known as an attack with an adversarial example) that exploit the weaknesses of classifiers and result in a different output. Here we systematically test the robustness of common text classifiers against available attacking techniques and discover that, indeed, meaning-preserving changes in input text can mislead the models. The approaches we test focus on finding vulnerable spans in text and replacing individual characters or words, taking into account the similarity between the original and replacement content. We also introduce BODEGA: a benchmark for testing both victim models and attack methods on four misinformation detection tasks in an evaluation framework designed to simulate real use cases of content moderation. The attacked tasks include (1) fact checking and detection of (2) hyperpartisan news, (3) propaganda, and (4) rumours. Our experimental results show that modern large language models are often more vulnerable to attacks than previous, smaller solutions, e.g. attacks on GEMMA being up to 27% more successful than those on BERT. Finally, we manually analyse a subset adversarial examples and check what kinds of modifications are used in successful attacks.
This Element aims to build, promote, and consolidate a new social science research agenda by defining and exploring the concepts of turbulence and robustness, and subsequently demonstrating the need for robust governance in turbulent times. Turbulence refers to the unpredictable dynamics that public governance is currently facing in the wake of the financial crisis, the refugee crisis, the COVID-19 pandemic, the inflation crisis etc. The heightened societal turbulence calls for robust governance aiming to maintain core functions, goals and values by means of flexibly adapting and proactively innovating the modus operandi of the public sector. This Element identifies a broad repertoire of robustness strategies that public governors may use and combine to respond robustly to turbulence. This title is also available as Open Access on Cambridge Core.
The idea that plants would be efficient, frugal or optimised echoes the recurrent semantics of ‘blueprint’ and ‘program’ in molecular genetics. However, when analysing plants with quantitative approaches and systems thinking, we instead find that plants are the results of stochastic processes with many inefficiencies, incoherence or delays fuelling their robustness. If one had to highlight the main value of quantitative biology, this could be it: plants are robust systems because they are not efficient. Such systemic insights extend to the way we conduct plant research and opens plant science publication to a much broader framework.
This chapter explores ways to diagnose the potential for nonignorable nonresponse to cause problems. Section 7.1 describes how to define the range of possible values of population values that are consistent with the observed data. These calculations require virtually no assumptions and are robust to nonignorable nonresponse; they are simple yet tend to be uninformative. Section 7.2 shows how to postulate possible levels of nonignorability and assess how results would change.
Opinion formation and information processing are affected by unconscious affective responses to stimuli—particularly in politics. Yet we still know relatively little about such affective responses and how to measure them. In this study, we focus on emotional valence and examine facial electromyography (fEMG) measures. We demonstrate the validity of these measures, discuss ways to make measurement and analysis more robust, and consider validity trade-offs in experimental design. In doing so, we hope to support scholars in designing studies that will advance scholarship on political attitudes and behavior by incorporating unconscious affective responses to political stimuli—responses that have too often been neglected by political scientists.