We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The spectral description of turbulence allows us to decompose velocity and pressure fields in terms of wavenumbers and frequencies, or length and time scales. We discuss the notion of scale decomposition and introduce several properties of the Fourier transform between physical (spatial/temporal) space and scale (spectral) space in various dimensions, including complex conjugate relations for real functions and Parseval’s theorem. The Fourier transform allows us to develop useful relations between correlations and energy spectra, which are used extensively in the statistical theory of turbulence. The one-dimensional and three-dimensional energy spectra are specifically discussed in conjunction with Taylor’s hypothesis to enable spectra computation from single-point time-resolved measurements. The discrete version of the transform, or the discrete Fourier series, is then introduced, as it is typically encountered in numerical simulations and postprocessing of discrete experimental data. Treatment of periodic data is first considered, followed by nonperiodic data with the help of windowing. The procedure for the computation of various discrete spectra is outlined.
This chapter discusses the transition between Fourier series and Fourier Transform, which is the tool for spectrum analysis. Generally, the use of linearly independent base functions allows a wide range of linear regression models that work in a least square sense such that the total error squared is minimized in finding the coefficients of the base functions. A special case is sinusoidal functions based on a fundamental frequency and all its harmonics up to infinity. This leads to the Fourier series for periodic functions. In this chapter, we start from the original Fourier series expression and convert the sinusoidal base functions to exponential functions. We can then consider the limit when the length of the function and the period of the original function approach infinity (so that the fundamental frequency approaches 0, including aperiodic functions), leading to the Fourier integral and Fourier Transform. We can then define the inverse Fourier Transform and establish the relationship between the coefficients of Fourier series and the discrete form Fourier Transform. All these are preparations for the fast Fourier Transform (FFT), an efficient algorithm of computation of the discrete Fourier Transform that is widely used in data analysis for oceanography and other applications.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.