We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We establish the bounds of Marcinkiewicz integrals associated to surfaces of revolution generated by two polynomial mappings on Triebel–Lizorkin spaces and Besov spaces when their integral kernels are given by functions $\unicode[STIX]{x1D6FA}\in H^{1}(\text{S}^{n-1})\cup L(\log ^{+}L)^{1/2}(\text{S}^{n-1})$. Our main results represent improvements as well as natural extensions of many previously known results.
Under the assumption that $\mu $ is a nondoubling measure, we study certain commutators generated by the Lipschitz function and the Marcinkiewicz integral whose kernel satisfies a Hörmander-type condition. We establish the boundedness of these commutators on the Lebesgue spaces, Lipschitz spaces, and Hardy spaces. Our results are extensions of known theorems in the doubling case.
A class of generalized Marcinkiewicz integral operators is introduced, and, under rather weak conditions on the integral kernels, the boundedness of such operators on ${{L}^{p}}$ and Triebel–Lizorkin spaces is established.
In this paper the authors establish the $L^p$ boundedness for several classes of Marcinkiewicz integral operators with kernels satisfying a condition introduced by Grafakos and Stefanov in Indiana Univ. Math. J.47 (1998), 455–469.
In this note the authors give the L2(n) boundedness of a class of parametric Marcinkiewicz integral with kernel function Ω in L log+L(Sn−1) and radial function h(|x|) ∈ l ∞ l(Lq)(+) for 1 < q ≦.
As its corollary, the Lp (n)(2 < p < ∞) boundedness of and and with Ω in L log+L (Sn-1) and h(|x|) ∈ l∞ (Lq)(+) are also obtained. Here and are parametric Marcinkiewicz functions corresponding to the Littlewood-Paley g*λ-function and the Lusin area function S, respectively.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.