Using cyclotomic specializations of equivariant K-theory with respect to a torus action we derive congruences for discrete invariants of exceptional objects in derived categories of coherent sheaves on a class of varieties that includes Grassmannians and smooth quadrics. For example, we prove that if , where the ni's are powers of a fixed prime number p, then the rank of an exceptional object on X is congruent to ±1 modulo p.