We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given any commutative Noetherian ring R and an element x in R, we consider the full subcategory $\mathsf{C}(x)$ of its singularity category consisting of objects for which the morphism that is given by the multiplication by x is zero. Our main observation is that we can establish a relation between $\mathsf{C}(x), \mathsf{C}(y)$ and $\mathsf{C}(xy)$ for any two ring elements x and y. Utilizing this observation, we obtain a decomposition of the singularity category and consequently an upper bound on the dimension of the singularity category.
We invoke the Bernstein–Gel$'$fand–Gel$'$fand (BGG) correspondence to study subcomplexes of free resolutions given by two well-known complexes, the Koszul and the Eagon–Northcott. This approach provides a complete characterization of the ranks of free modules in a subcomplex in the Koszul case and imposes numerical restrictions in the Eagon–Northcott case.
Pirashvili’s Dold–Kan type theorem for finite pointed sets follows from the identification in terms of surjections of the morphisms between the tensor powers of a functor playing the role of the augmentation ideal; these functors are projective. We give an unpointed analogue of this result: namely, we compute the morphisms between the tensor powers of the corresponding functor in the unpointed context. We also calculate the Ext groups between such objects, in particular showing that these functors are not projective; this is an important difference between the pointed and unpointed contexts. This work is motivated by our functorial analysis of the higher Hochschild homology of a wedge of circles.
We find explicit free resolutions for the D-modules Dfs and D[s] fs / D[s] fs+1, where f is a reduced equation of a locally quasi-homogeneous free divisor. These results are based on the fact that every locally quasi-homogeneous free divisor is Koszul free, which is also proved in this paper.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.