We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mathematical background and formulation of numerical minimization process are described in terms of gradient-based methods, whose ingredients include gradient, Hessian, directional derivatives, optimality conditions for minimization, Hessian eigensystem, conjugate number of Hessian, and conjugate vectors. Various minimization algorithms, such as the steepest descent method, Newton’s method, conjugate gradient method, and quasi-Newton’s method, are introduced along with practical examples.
A brief derivation of the Taylor expansion for a scalar function depending on a vector, with application to the inverse distance dependence in the Coulomb expression for electrostatic interactions.
Chapter 7 describes the second-order reliability method (SORM), which employs a second-order approximation of the limit-state surface fitted at the design point in the standard normal space. Three distinct SORM approximations are presented. The classical SORM fits the second-order approximating surface to the principal curvatures of the limit-state surface at the design point. This approach requires computing the Hessian (second-derivative matrix) of the limit-state function at the design point and its eigenvalues as the principal curvatures. The second approach computes the principal curvatures iteratively in the process of finding the design point. This approach requires only first-order derivatives of the limit-state function but repeated solutions of the optimization problem for finding the design point. One advantage is that the principal curvatures are found in decreasing order of magnitude and, hence, the computations can be stopped when the curvature found is sufficiently small. The third approach fits the approximating second-order surface to fitting points in the neighborhood of the design point. This approach also avoids computing the Hessian. Furthermore, it corrects for situations where the curvature is zero but the surface is curved, e.g., when the design point is an inflection point of the surface. Results from the three methods are compared numerically.
The existence and continuity for the Calderón projector of the perturbed odd signature operator on a 3-manifold is established. As an application we give a new proof of a result of Taubes relating the modulo 2 spectral flow of a family of operators on a homology 3-sphere with the difference in local intersection numbers of the character varieties coming from a Heegard decomposition.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.