We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This is the second part of our study on the dimension theory of
$C^1$
iterated function systems (IFSs) and repellers on
$\mathbb {R}^d$
. In the first part [D.-J. Feng and K. Simon. Dimension estimates for
$C^1$
iterated function systems and repellers. Part I. Preprint, 2020, arXiv:2007.15320], we proved that the upper box-counting dimension of the attractor of every
$C^1$
IFS on
${\Bbb R}^d$
is bounded above by its singularity dimension, and the upper packing dimension of every ergodic invariant measure associated with this IFS is bounded above by its Lyapunov dimension. Here we introduce a generalized transversality condition (GTC) for parameterized families of
$C^1$
IFSs, and show that if the GTC is satisfied, then the dimensions of the IFS attractor and of the ergodic invariant measures are given by these upper bounds for almost every (in an appropriate sense) parameter. Moreover, we verify the GTC for some parameterized families of
$C^1$
IFSs on
${\Bbb R}^d$
.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.