We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let ρ be a monotone quasinorm defined on ${\rm {\frak M}}^ + $, the set of all non-negative measurable functions on [0, ∞). Let T be a monotone quasilinear operator on ${\rm {\frak M}}^ + $. We show that the following inequality restricted on the cone of λ-quasiconcave functions
where $1\les p\les \infty $ and v is a weighted function, is equivalent to slightly different inequalities considered for all non-negative measurable functions. The case 0 < p < 1 is also studied for quasinorms and operators with additional properties. These results in turn enable us to establish necessary and sufficient conditions on the weights (u, v, w) for which the three weighted Hardy-type inequality
We prove that the extremal sequences for the Bellman function of the dyadic maximal operator behave approximately as eigenfunctions of this operator for a specific eigenvalue. We use this result to prove the analogous one with respect to the Hardy operator.
We characterize, in the context of rearrangement invariant spaces, the optimal range space for a class of monotone operators related to the Hardy operator. The connection between the optimal range and the optimal domain for these operators is carefully analysed.
We study a compactness property of the operators between weighted Lebesgue spaces that average a function over certain domains involving a star-shaped region. The cases covered are (i) when the average is taken over a difference of two dilations of a star-shaped region in ${{\mathbb{R}}^{N}}$, and (ii) when the average is taken over all dilations of star-shaped regions in ${{\mathbb{R}}^{N}}$. These cases include, respectively, the average over annuli and the average over balls centered at origin.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.