We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Mechanical motions of atoms near their equilibrium geometry are approximated by a universal mapping on a collection of independent harmonic oscillators. The respective frequencies are characteristic to the material, for example, lattice phonons or molecular vibrations. The quantum description of atomic motions involves the solution of the Schrödinger equation for the harmonic oscillator in the space of proper wave functions. The energy levels obtained are shown to be equally spaced where the level spacing is proportional to the oscillator frequency. The stationary solutions are identified in terms of Hermite polynomials, demonstrating remarkable differences from the classical harmonic oscillator. The importance of the zero-point energy is emphasized in the context of the stability of chemical bonds, where the Harmonic approximation is shown to be reasonably valid for typical interatomic bonds in standard thermal conditions. This explains the relevance of the harmonic approximation for analyzing the absorption spectrum of infrared radiation by molecules.
In this paper, we present explicit and computable error bounds for the asymptotic expansions of the Hermite polynomials with Plancherel–Rotach scale. Three cases, depending on whether the scaled variable lies in the outer or oscillatory interval, or it is the turning point, are considered separately. We introduce the ‘branch cut’ technique to express the error terms as integrals on the contour taken as the one-sided limit of curves approaching the branch cut. This new technique enables us to derive simple error bounds in terms of elementary functions. We also provide recursive procedures for the computation of the coefficients appearing in the asymptotic expansions.
Chapter 5 presents methods for assessing structural reliability under incomplete probability information, i.e., when complete distributional information on the basic random variables is not available. First, second-moment methods are presented where the available information is limited to the means, variances, and covariances of the basic random variables. These include the mean-centered first-order second-moment (MCFOSM) method, the first-order second-moment (FOSM) method, and the generalized second-moment method. These methods lead to approximate computations of the reliability index as a measure of safety. Lack of invariance of the MCFOSM method relative to the formulation of the limit-state function is demonstrated. The FOSM method requires finding the “design point,” which is the point in a transformed standard outcome space that has minimum distance from the origin. An algorithm for finding this point is presented. Next, methods are presented that incorporate probabilistic information beyond the second moments, including knowledge of higher moments and marginal distributions. Last, a method is presented that employs the upper Chebyshev bound for any given state of probability information. The chapter ends with a discussion of the historical significance of the above methods as well as their shortcomings and argues that they should no longer be used in practice.
For a general vector field we exhibit two Hilbert spaces, namely the space of so called closed functions and the space of exact functions and we calculate the codimension of the space of exact functions inside the larger space of closed functions. In particular we provide a new approach for the known cases: the Glauber field and the second-order Ginzburg–Landau field and for the case of the fourth-order Ginzburg–Landau field.
We study the asymptotic behavior of the empirical process when theunderlying data are Gaussian and exhibit seasonallong-memory. We prove that the limiting process can be quitedifferent from the limit obtained in the case of regularlong-memory. However, in both cases, the limiting process isdegenerated. We apply our results to von–Mises functionals andU-Statistics.
An Ornstein-Uhlenbeck process subject to a quadratic killing rate is analyzed. The distribution for the process killing time is derived, generalizing the analogous result for Brownian motion. The derivation involves the use of Hermite polynomials in a spectral expansion.
Recently, H. M. Srivastava extended certain interesting generating functions of L. Carlitz to the forms:
and
where are general oncand many-parameter sequences of functions. In the present paper some general addition formulas for analogous sequences of functions are derived, and a number of interesting applications of the main results are given.
A GI/G/r(x) store is considered with independently and identically distributed inputs occurring in a renewal process, with a general release rate r(·) depending on the content. The (pseudo) extinction time, or the content, just before inputs is a Markov process which can be represented by a random walk on and below a bent line; this results in an integral equation of the form gn+1(y) = ∫ l(y, w)gn(w) dw with l(y, w) a known conditional density function. An approximating solution is found using Hermite or modified Hermite polynomial expansions resulting in a Gram–Charlier or generalized Gram–Charlier representation, with the coefficients being determined by a matrix equation. Evaluation of the elements of the matrix involves two-dimensional numerical integration for which Gauss–Hermite–Laguerre integration is effective. A number of examples illustrate the quality of the approximating procedure against exact and simulated results.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.