We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this short note we first extend the validity of the spectral radius formula, obtained by M. Anoussis and G. Gatzouras, for Fourier–Stieltjes algebras. The second part is devoted to showing that, for the measure algebra on any locally compact non-discrete Abelian group, there are no non-trivial constraints among three quantities: the norm, the spectral radius, and the supremum of the Fourier–Stieltjes transform, even if we restrict our attention to measures with all convolution powers singular with respect to the Haar measure.
Let $G$ be a locally compact amenable group and $A(G)$ and $B(G)$ be the Fourier and the Fourier–Stieltjes algebras of $G,$ respectively. For a power bounded element $u$ of $B(G)$, let ${\mathcal{E}}_{u}:=\{g\in G:|u(g)|=1\}$. We prove some convergence theorems for iterates of multipliers in Fourier algebras.
(a) If $\Vert u\Vert _{B(G)}\leq 1$, then $\lim _{n\rightarrow \infty }\Vert u^{n}v\Vert _{A(G)}=\text{dist}(v,I_{{\mathcal{E}}_{u}})\text{ for }v\in A(G)$, where $I_{{\mathcal{E}}_{u}}=\{v\in A(G):v({\mathcal{E}}_{u})=\{0\}\}$.
(b) The sequence $\{u^{n}v\}_{n\in \mathbb{N}}$ converges for every $v\in A(G)$ if and only if ${\mathcal{E}}_{u}$ is clopen and $u({\mathcal{E}}_{u})=\{1\}.$
(c) If the sequence $\{u^{n}v\}_{n\in \mathbb{N}}$ converges weakly in $A(G)$ for some $v\in A(G)$, then it converges strongly.
If a locally compact group G acts on a C*-algebra B, we have both full and reduced crossed products and each has a coaction of G. We investigate ‘exotic’ coactions in between the two, which are determined by certain ideals E of the Fourier–Stieltjes algebra B(G); an approach that is inspired by recent work of Brown and Guentner on new C*-group algebra completions. We actually carry out the bulk of our investigation in the general context of coactions on a C*-algebra A. Buss and Echterhoff have shown that not every coaction comes from one of these ideals, but nevertheless the ideals do generate a wide array of exotic coactions. Coactions determined by these ideals E satisfy a certain ‘E-crossed product duality’, intermediate between full and reduced duality. We give partial results concerning exotic coactions with the ultimate goal being a classification of which coactions are determined by ideals of B(G).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.