We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Various types of fibers encountered in Network materials are presented and classified in this chapter. Their mechanical behavior is of primary concern here. The first section describes the structure and mechanical behavior of cellulose fibers, polymeric fibers used in nonwovens, and collagen fibers forming connective tissue. The remainder of the chapter is divided into three parts presenting the mechanical behavior of athermal fibers, thermal filaments, and of fiber bundles. The linear, nonlinear, and rupture characteristics of athermal fibers are presented. Thermal filaments, which form molecular networks such as elastomers and gels, are described by the Gaussian, Langevin, and self-avoiding random walk models. Models describing the mechanics of semiflexible filaments are presented. The section on the mechanics of fiber bundles presents a number of results relevant for bundles of continuous and discontinuous (staple) fibers, including the effect of bundle twisting and of packing on the axial stiffness and strength of the bundle. These results apply to many networks of practical importance which are composed from fiber bundles.
This chapter presents results related to the interaction of fibers. In networks, fibers form crosslinks and develop contacts. The mechanical behavior of the crosslinks between athermal fibers and between thermal filaments is discussed, with emphasis on crosslink failure and strength. Contacts between fibers form either along the fiber length, within bundles of parallel fibers, or at specific sites where fibers cross at an angle. The mechanics of elastic contacts with and without cohesive interactions between fibers is reviewed. Sliding of fibers in contact is often encountered in networks and friction has strong effects on network mechanics. Several results related to friction at elastic contacts are reviewed.
We define partial differential ($\text{PD}$ in the following), i.e., field theoretic analogues of Hamiltonian systems on abstract symplectic manifolds and study their main properties, namely, $\text{PD}$ Hamilton equations, $\text{PD}$ Noether theorem, $\text{PD}$ Poisson bracket, etc. Unlike the standard multisymplectic approach to Hamiltonian field theory, in our formalism, the geometric structure (kinematics) and the dynamical information on the “phase space” appear as just different components of one single geometric object.
A large deviation theorem of the Cramér–Petrov type and a ranking limit theorem of Loève are used to derive an approximation for the statistical distribution of the failure time of fibrous materials. For that, fibrous materials are modeled as a series of independent and identical bundles of parallel filaments and the asymptotic distribution of their failure time is determined in terms of statistical characteristics of the individual filaments, as both the number of filaments in each bundle and the number of bundles in the chain grow large simultaneously. While keeping the number n of filaments in each bundle fixed and increasing only the chain length k leads to a Weibull limiting distribution for the failure time, letting both increase in such a way that log k(n) = o(n), we show that the limit distribution is for . Since fibrous materials which are both long and have many filaments prevail, the result is of importance in the materials science area since refined approximations to failure-time distributions can be achieved.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.